

January 31, 2022

Via Sharefile

Ms. Julia Galayda
Bureau of Case Management
New Jersey Department of Environmental Protection
401 East State Street
PO Box 28
Trenton, New Jersey 08625-0028

Re: Semi-Annual Groundwater Monitoring Report (July – December 2021)

Hess Corporation – Former Port Reading Complex (HC-PR)

750 Cliff Road

Port Reading, Middlesex County, New Jersey

Dear Ms. Galayda:

Enclosed please find the December 2021 Semi-Annual Groundwater Monitoring Report for the above referenced facility's North Landfarm, South Landfarm, and No. 1 Landfarm. This report was prepared by Earth Systems, Inc. on behalf of Hess Corporation, and presents the results of the monitoring and sampling events conducted in July and October 2021. The next monitoring and sampling events will be conducted in January and April 2022, with the results presented in the July 2022 Semi-Annual report.

Should you have any questions or comments relating to this report, please call me at 732-739-6444. I can also be reached via e-mail at ablake@earthsys.net. If you have any questions relating to the project and schedule moving forward, you can also contact Mr. John Schenkewitz of Hess Corporation at 609-406-3969.

Sincerely,

Earth Systems, Inc.

Amy Blake

Senior Project Manager

cc: Mr. Sameh Abdellatif – USEPA Region II (electronic copy)

Mr. Andy Park – USEPA Region II (electronic copy)

Mr. John Schenkewitz – Hess Corporation (electronic copy)

Mr. Rick Ofsanko – Earth Systems, Inc. (electronic copy)

Mr. John Virgie – Earth Systems, Inc. (electronic copy)

SEMI-ANNUAL GROUNDWATER MONITORING REPORT

HESS CORPORATION - FORMER PORT READING COMPLEX NORTH LANDFARM, SOUTH LANDFARM, AND NO.1 LANDFARM

July - December 2021

Hess Corporation – Former Port Reading Complex 750 Cliff Road Port Reading, Middlesex County New Jersey

January 2022

Prepared for:

Hess Corporation

Trenton-Mercer Airport 601 Jack Stephan Way West Trenton, New Jersey 08628

Prepared by:

1625 Highway 71 Belmar, New Jersey 07719

TABLE OF CONTENTS

1.0	INTRODUCTION AND SUMMARY TABLE	1
2.0	NORTH LANDFARM	1
2.1 2.2 2.3 2.4 2.5 2.6 2.7	HYDRAULIC MONITORING RESULTSGROUNDWATER MONITORINGGROUNDWATER ANALYTICAL RESULTS – JULY 2021GROUNDWATER ANALYTICAL RESULTS – OCTOBER 2021	
3.1 3.2 3.3 3.4 3.5 3.6 3.7	HYDRAULIC MONITORING RESULTS	
4.0	NO. 1 LANDFARM	10
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	HYDRAULIC MONITORING RESULTSGROUNDWATER MONITORING	10 11 12 12
5.0	SUMMARY AND IMPLEMENTATION SCHEDULE	14

FIGURES

FIGURE 1: USGS Site Location Map

FIGURE 2: Site Plan

FIGURE 3: Groundwater Contour Map – North Landfarm July 2021 Groundwater Contour Map - North Landfarm October 2021 FIGURE 4: FIGURE 5: Groundwater Analytical Map – North Landfarm July 2021 Groundwater Analytical Map – North Landfarm October 2021 FIGURE 6: FIGURE 7: Groundwater Contour Map - South Landfarm July 2021 FIGURE 8: Groundwater Contour Map - South Landfarm October 2021 Groundwater Analytical Map – South Landfarm July 2021 FIGURE 9: FIGURE 10: Groundwater Analytical Map – South Landfarm October 2021 Groundwater Contour Map - No. 1 Landfarm July 2021 FIGURE 11: FIGURE 12: Groundwater Contour Map – No. 1 Landfarm October 2021 FIGURE 13: Groundwater Analytical Map – No. 1 Landfarm July 2021 Groundwater Analytical Map - No. 1 Landfarm October 2021 FIGURE 14:

TABLES

TABLE 1: Groundwater Gauging Data Table

TABLE 2:Groundwater Analytical Results – North Landfarm July 2021TABLE 3:Groundwater Analytical Results – North Landfarm October 2021TABLE 4:Groundwater Analytical Results – South Landfarm July 2021TABLE 5:Groundwater Analytical Results – South Landfarm October 2021TABLE 6:Groundwater Analytical Results – No. 1 Landfarm July 2021TABLE 7:Groundwater Analytical Results – No. 1 Landfarm October 2021TABLE 8:Leachate Analytical Results – No. 1 Landfarm July and Oct. 2021

TABLE 9: Soil Analytical Results – No. 1 Landfarm September 2021

<u>APPENDICES</u>

APPENDIX A: Low Flow Groundwater Sampling Sheets

APPENDIX B: Analytical Data Packages

1.0 Introduction and Summary Table

Earth Systems, Inc. (Earth Systems) has been retained by Hess Corporation (Hess) to provide environmental consulting services for the Hess Corporation – Former Port Reading Complex (HC-PR) facility located at 750 Cliff Road in Port Reading (Woodbridge Township), Middlesex County, New Jersey. A United States Geological Survey (USGS) 7.5-minute series quadrangle map (Arthur Kill, New Jersey) depicting the site location, facility and associated land features is included as **Figure 1**. A Site Plan has been included as **Figure 2**.

This report documents the groundwater monitoring activities completed in third and fourth quarters of 2021 for the North Landfarm, South Landfarm, and No. 1 Landfarm.

SUMMARY OF ACTIONS

Location	Case Number/ Description	Description and Dates of Action
AOC-1	North Landfarm	Quarterly Groundwater Monitoring Events – July & October 2021
AOC-2	South Landfarm	Quarterly Groundwater Monitoring Events – July & October 2021
AOC-3	No. 1 Landfarm	Quarterly Groundwater Monitoring Events – July & October 2021 Leachate and Soil Sampling Event – July, October & September 2021

2.0 North Landfarm

2.1 Historic Information

The United States Environmental Protection Agency (USEPA) issued a Hazardous and Solid Waste Amendments (HSWA) Permit (No. NJD045445483) for the Port Reading facility effective May 1, 1988. The HSWA Permit requires the nature, extent, and rate of migration be determined for hazardous waste or hazardous constituents in soils, groundwater, and sediment at any solid waste management unit (SWMU).

On November 14, 1995, Hess was informed, via NJDEP correspondence, that the Bureau of Federal Case Management (BFCM) would assume oversight of the North and South Landfarms in addition to other applicable areas of concern (AOCs).

The North Landfarm operated from 1975 to October 24, 1985, receiving Interim Status in 1980. As part of the USEPA permitting process and the Discharge to Groundwater permitting process under the New Jersey Pollutant Discharge Elimination System (NJPDES) for the facility, Hess elected to close the North Landfarm.

The North Landfarm is located in the northern portion of the facility. It is bordered to the west and to the north by the earthen retention dike of Tank 7945 and on the east and south by a dike system built to retain run-off from the Landfarm. The surface area of the North Landfarm is approximately 1/3 acre. The Landfarm is underlain by dredged fill and native marsh soils containing silt and clay.

The North Landfarm formerly treated two listed hazardous waste streams, API Separator Sludge (K051) and Leaded Tank Bottoms (K052). The total volume of waste applied to the North Landfarm from 1978 until October 24, 1985 is estimated at 21 tons. The quantity of hazardous waste applied to the Landfarm during this period is estimated at 15 tons. Non-hazardous biomass was applied to the Landfarm until approximately 1988.

2.2 Site Specific Geology and Hydrogeology

The North Landfarm is situated upon approximately 8.0 feet of dredged fill material. The source of the dredged fill is from the deepening of the Arthur Kill and consists of reddish-brown sands with clay and silt. Underlying this fill layer is a layer that consists of predominately clayey silt and organic matter. This layer gradually transitions to an organic fibrous material (peat) zone with silty clay. The peat layer starts at approximately 10.0 feet below ground surface (bgs).

The general flow of the unconfined groundwater beneath the North Landfarm is to the north-northeast. This gradient is affected by buried former channels of Smith Creek and tributaries. These are located south and east of the Landfarm. The waters from the upper unconfined aquifer merge with the North Drainage Ditch. The North Drainage Ditch trends northwest to southeast and connects to the Arthur Kill approximately 2,100 feet southeast of the Landfarm.

The normal daily tide elevations in the Arthur Kill range from a low tide of about -2.3 feet below the National Geodetic Vertical Datum (NGVD) of 1929 to a high tide of +4.3 feet above NGVD. At typical high tide, the ditch fills with water and at low tide the ditch is dry. There is no significant westward flow of water at high tide and no significant outward flow of water at low tide.

The North Landfarm is surrounded by diked containment walls, which prevent the discharge of Landfarm surface water. A groundwater monitoring well network has been established for the North Landfarm to monitor potential releases of constituents from the Landfarm. These wells are monitored, sampled, and analyzed on a quarterly basis in accordance with the NJPDES permit.

2.3 Hydraulic Monitoring Results

On July 10 and October 7, 2021, depth to water measurements were collected from the North Landfarm monitoring wells LN-1 through LN-7. Groundwater elevation contour data from the July and October 2021 monitoring events are summarized in **Table 1**.

Groundwater flow direction, as depicted on the groundwater contour maps (**Figures 3** and **4**), is generally toward the north and northeast, which is consistent with historic observations.

2.4 Groundwater Monitoring

On July 14 and October 14, 2021, groundwater samples were collected via low-flow sampling methodology in accordance with the NJDEP's *Field Sampling Procedures Manual (FSPM)*.

Prior to groundwater purging, the pump intake depth placement was determined by water level, screen depth, and contaminants of concern. The contaminants of concern for the landfarms are petroleum related compounds. Therefore, the appropriate sampling interval is the top of the groundwater column and the pump was placed in the top 2 feet of the saturated screen. The depth of the pump was recorded on the low-flow field worksheets. These field worksheets are included in **Appendix A**. Groundwater purging was conducted at each well utilizing a Monsoon submersible pump with Teflon-lined 1/4 inch polyethylene tubing. Groundwater field parameters were collected using a Horiba U-52 water quality meter and flow cell. The Horiba U-52 is calibrated by both the rental company as well as by field personnel. The Horiba is calibrated in accordance with the manufacturer's instructions and in accordance with Earth Systems' Standard Operating All calibration documentation is included in **Appendix A**. The field parameters which were monitored include temperature, conductivity, dissolved oxygen, turbidity, redox potential, and pH. Groundwater elevation measurements were collected utilizing a Solinist oil/water interface probe. Groundwater elevations are recorded prior to pump placement and continuously during well purging. The total depth of the well is measured at the conclusion of well sampling to prevent disturbing any sediment present at the base of the well prior to sampling. During well purging, the monitored parameters are measured every 5 minutes until three consecutive stable readings are recorded. In accordance with the FSPM Section 6.9.2.2.5.2, the following values are utilized to determine stability for the monitored parameters:

- pH +/- 0.1 unit
- Specific Conductance +/- 3%
- Temperature +/- 3%
- Dissolved Oxygen +/- 10%
- Turbidity +/- 10% for values greater than 1 NTU
- ORP +/- 10 millivolts
- Water level drawdown < 0.3 feet

Earth Systems is certified by the NJDEP Office of Quality Assurance (OQA) to collect the parameters specified above (Laboratory Certification #13040).

The parameter readings and the water level drawdown were recorded on the low-flow field worksheets. Any variances were also recorded on the low-flow stabilization sheets.

Groundwater monitoring records, which include low flow field worksheets and calibration information, are included in **Appendix A**.

Prior to and at the completion of groundwater sampling of each monitoring well, the Horiba U-52 water quality meter, flow cell, and submersible pump are properly decontaminated using Alconox and a distilled or deionized water rinse. Tubing is discarded after sampling of each well and is not reused.

Following well water purging and stabilization, groundwater samples were collected and placed into laboratory provided containers. All groundwater samples were collected directly from the tubing. All samples were appropriately labeled, logged, and placed into a cooler with ice prior to submittal to the laboratory. Quality control samples, including trip blanks and field blanks, were collected and submitted for analysis to evaluate the potential for cross contamination.

Groundwater samples were collected from monitoring wells LN-1 through LN-7 on July 14, 2021 and October 14, 2021. SGS Laboratories (SGS) of Dayton, New Jersey (NJ NELAP Certification No. 12129) provided the analytical services.

2.5 Groundwater Analytical Results – July 2021

On July 14, 2021, groundwater samples were collected from monitoring wells LN-1 through LN-7 and analyzed for select Volatile Organic Compounds (VOCs), metals, pesticides, and various wet chemistry parameters as specified in the October 24, 1984 Draft Interim NJPDES Permit #0028878. The results of the July 2021 North Landfarm groundwater sampling event are summarized in **Table 2**.

Targeted VOCs and pesticides were not detected at concentrations exceeding the NJDEP Ground Water Quality Standards (GWQS) in the groundwater samples collected from monitoring wells LN-1 through LN-7.

Select metals were detected at concentrations exceeding the GWQS in groundwater samples collected from all monitoring wells. General chemistry parameters were also detected exceeding the GWQS in all groundwater samples, excluding the groundwater samples collected from wells LN-2, LN-5, and LN-6. The following table summarizes the metals and general chemistry laboratory results. Although the naturally occurring sodium, chlorides and dissolved solids deem the shallow groundwater as brackish and unsuited for potable use, all groundwater samples have been compared to the NJDEP groundwater quality standards.

Client Sample ID:			LN-1	LN-2	LN-3	LN-4	LN-5	LN-6	LN-7
Lab Sample ID:		NJ	JD28201-1	JD28201-2	JD28201-3	JD28201-4	JD28201-5	JD28201-6	JD28201-7
Date Sampled:		Groundwater	7/14/2021	7/14/2021	7/14/2021	7/14/2021	7/14/2021	7/14/2021	7/14/2021
Matrix:		Criteria	Ground Water						
Metals Analysis									
Aluminum	ug/l	200	383	<200	<200	<200	1500	<200	<200
Arsenic	ug/l	3	<3.0	<3.0	5.9	12.3	<3.0	<3.0	3.7
Iron	ug/l	300	41500	18800	55800	24700	2920	21000	25400
Lead	ug/l	5	5.3	<3.0	<3.0	<3.0	4.3	<3.0	<3.0
Manganese	ug/l	50	784	302	758	546	33.1	524	701
Sodium	ug/l	50000	169000	107000	277000	407000	45100	123000	93700
General Chemistry									
Chloride	mg/l	250	286	155	428	609	15.4	108	157
Nitrogen, Ammonia	mg/l	3	4.5	2.3	4.8	2.3	<0.2	1.4	3.1
Solids, Total Dissolved	mg/l	500	115	250	655	690	200	40	160

Blue shading indicates exceedance of GWQS

2.6 Groundwater Analytical Results – October 2021

On October 14, 2021, groundwater samples were collected from monitoring wells LN-1 through LN-7 and analyzed for select VOCs, metals, pesticides, and various wet chemistry parameters as specified in the October 24, 1984 Draft Interim NJPDES Permit #0028878. The results of the October 2021 North Landfarm groundwater sampling event are summarized in **Table 3**.

Targeted VOCs and pesticides were not detected at concentrations exceeding the GWQS in the groundwater samples collected from monitoring wells LN-1 through LN-7.

Select metals were detected at concentrations exceeding the GWQS in groundwater samples collected from all monitoring wells. General chemistry parameters were also detected above the GWQS in all groundwater samples, excluding the groundwater samples collected from wells LN-2, LN-5, and LN-7. The following table summarizes the metals and general chemistry laboratory results.

Client Sample ID:			LN-1	LN-2	LN-3	LN-4	LN-5	LN-6	LN-7
Lab Sample ID:		NJ Groundwater	JD33583-3	JD33583-4	JD33583-5	JD33583-6	JD33583-7	JD33583-8	JD33583-9
Date Sampled:		Criteria	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021
Matrix:			Ground Water						
Metals Analysis									
Aluminum	ug/l	200	1150	<200	<200	<200	1550	<200	<200
Arsenic	ug/l	3	3	3.5	8.5	13.2	<3.0	7.7	5.2
Iron	ug/l	300	47400	17000	40200	20200	3300	24100	27400
Lead	ug/l	5	5.9	<3.0	<3.0	<3.0	7.3	<3.0	<3.0
Manganese	ug/l	50	772	254	692	468	34.2	527	774
Sodium	ug/l	50000	183000	92500	206000	274000	27500	141000	111000
General Chemisti	у								
Chloride	mg/l	250	385	132	291	458	17.6	187	156
Nitrogen, Ammonia	mg/l	3	6.1	2.2	5.9	2.4	<0.20	4.7	2.5
Solids, Total Dissolved	mg/l	500	140	30	230	560	107	70	<10

Blue shading indicates exceedance of GWQS

2.7 Conclusions

The two main contaminants of concern for the North Landfarm groundwater are arsenic and lead. A summary of arsenic and lead concentrations for the last 12 quarterly sampling events is included below. Groundwater analytical results for the North Landfarm are summarized on **Figure 5**.

Arsenic Concentrations

Arsenic concentrations have been generally consistent for the last 12 quarterly groundwater sampling events. The following table summarizes the arsenic concentrations from January 2019 through October 2021.

Well ID	GWQS (ug/l)	1/15/2019	4/15/2019	7/9/2019	10/24/2019	1/22/2020	4/14/2020	7/14/2020	10/6/2020	1/27/2021	4/14/2021	7/14/2021	10/14/2021
LN-1	3	<3.0	<3.0	4.3	13.7	<3.0	9.6	<3.0	5	3.6	<3.0	<3.0	3
LN-2	3	5.9	4.3	3.8	<3.0	3.2	4.5	4.8	4.9	<3.0	<3.0	<3.0	3.5
LN-3	3	4.8	<3.0	9.9	6.1	6.6	9	8.2	11.2	3.4	5.3	5.9	8.5
LN-4	3	10.5	9.9	14.5	17.8	11.2	12.1	16.5	16.6	11.5	9.3	12.3	13.2
LN-5	3	13.6	27	15.6	20	5.2	11.6	3.9	<3.0	<3.0	<3.0	<3.0	<3.0
LN-6	3	<3.0	6.8	7	7.6	4.7	6	9.8	11.4	4.9	3.6	<3.0	7.7
LN-7	3	3.9	<3.0	5.9	8	5.2	8.3	6	7.8	3.1	3.8	3.7	5.2

Lead Concentrations

Lead concentrations have fluctuated in the groundwater samples collected from monitoring well LN-5 from 3.6 to a high of 146 parts per billion (ppb) over the last 12 rounds of quarterly sampling. The following table summarizes the lead analytical results from January 2019 through October 2021.

Well ID	GWQS (ug/l)	1/15/2019	4/15/2019	7/9/2019	10/24/2019	1/22/2020	4/14/2020	7/14/2020	10/6/2020	1/27/2021	4/14/2021	7/14/2021	10/14/2021
LN-5	5	42.8	146	50.9	69.5	22.5	45.2	9.9	3.6	62.5	6.9	4.3	7.3

Laboratory reports for the North Landfarm July and October 2021 quarterly sampling events are included in **Appendix B**.

3.0 South Landfarm

3.1 Historic Information

The South Landfarm was constructed in 1975 above a former surface impoundment that previously received oily wastewaters. The South Landfarm was utilized for the treatment of oily soils and oily sludges from the onsite API Separator, corrugated plate separator, recoverable (slop) oil tank bottoms, and the tank bottoms of petroleum storage tanks.

The South Landfarm was operated during the refinery standby period from 1975 until 1984. In 1980, the South Landfarm received Resource Conservation and Recovery Act (RCRA) Interim Status for operation as a RCRA land treatment unit for process wastes (K051 and K052).

3.2 Site Specific Geology and Hydrogeology

A silty clay marsh layer is present below the South Landfarm from approximately 10 to 20 feet bgs. This marsh layer provides an effective aquitard (i.e., a confining barrier/layer) between the upper unconfined water table directly beneath the Landfarm, and the deeper confined water table underlying the marsh layer.

Hydrogeologic data indicates that well LS-3 is screened in poorly consolidated silty clay, which differs from the other south landfarm wells that have screened intervals that include sand units.

3.3 Hydraulic Monitoring Results

On July 10 and October 7, 2021, depth to water measurements were collected from the South Landfarm monitoring wells LS-1R, LS-2, LS-3 and LS-4. Groundwater elevation contour data from the July and October 2021 monitoring events is summarized in **Table 1**.

Groundwater flow direction, as depicted on the groundwater contour maps (**Figures 6** and **7**), is generally to the south, which is consistent with historic observations.

3.4 Groundwater Monitoring

On July 15 and October 15, 2021, groundwater samples were collected via low-flow sampling methodology in accordance with the NJDEP's *FSPM*. Groundwater sampling protocols are detailed in **Section 2.4**.

Groundwater monitoring records, which include low flow field worksheets and calibration information, are included in **Appendix A**.

Groundwater samples were collected from monitoring wells LS-1R, LS-2, LS-3, and LS-4 on July 15, 2021 and October 15, 2021. SGS of Dayton, New Jersey (NJ NELAP Certification No. 12129) provided the analytical services.

3.5 Groundwater Analytical Results – July 2021

South Landfarm

On July 15, 2021, groundwater samples were collected from wells LS-1R, LS-2, LS-3, and LS-4 and analyzed for select VOCs, metals, and general chemistry parameters in accordance with the Draft Interim NJPDES Permit #0028878. Analytical results from the July 2021 South Landfarm groundwater sampling event are summarized in **Table 4.**

Benzene was detected in the groundwater samples collected from monitoring wells LS-3 and LS-4 at concentrations exceeding the GWQS. TBA was detected in the groundwater sample collected from monitoring well LS-3 at a concentration exceeding the GWQS.

Arsenic, iron, manganese, and sodium were detected at concentrations exceeding the GWQS in groundwater samples collected from all monitoring wells. General chemistry parameters were also detected exceeding the GWQS in the groundwater samples collected from monitoring wells LS-3 and LS-4. Although the naturally occurring sodium, chlorides and dissolved solids deem the shallow groundwater as brackish and unsuited for potable use, all groundwater samples have been compared to the NJDEP groundwater quality standards. The following table summarizes the laboratory results.

Client Sample ID:			LS-1R	LS-2	LS-3	LS-4
Lab Sample ID:		NJ Groundwater	JD28307-3	JD28307-4	JD28307-5	JD28307-6
Date Sampled:		Criteria	7/15/2021	7/15/2021	7/15/2021	7/15/2021
Matrix:		Criteria	Ground Water	Ground Water	Ground Water	Ground Water
MS Volatiles (SW846 8260D)						
Benzene	ug/l	1	ND (0.43)	ND (0.43)	7	7.9
Tert Butyl Alcohol	ug/l	100	ND (5.8)	ND (5.8)	1330	61.9
Metals Analysis						
Arsenic	ug/l	3	10.5	43.9	11.7	24
Iron	ug/l	300	7640	3630	119000	12300
Manganese	ug/l	50	581	301	1960	246
Sodium	ug/l	50000	58900	102000	1440000	368000
General Chemistry						
Chloride	mg/l	250	34.1	198	3080	555
Nitrogen, Ammonia	mg/l	3	0.94	1.4	10.5	33.6
Solids, Total Dissolved	mg/l	500	127	555	5810	1080

Blue shading indicates exceedance of GWQS

3.6 Groundwater Analytical Results – October 2021

On October 15, 2021, groundwater samples were collected from wells LS-1R, LS-2, LS-3 and LS-4 and analyzed for select VOCs, metals, and general chemistry parameters in accordance with Draft Interim NJPDES Permit #0028878. Analytical results from the October 2021 South Landfarm groundwater sampling event are summarized in **Table 5**.

Benzene was detected in the groundwater samples collected from monitoring wells LS-3 and LS-4 at concentrations exceeding the GWQS. TBA was detected in the groundwater sample collected from monitoring well LS-3 at a concentration exceeding the GWQS. Arsenic, iron, manganese, and sodium were detected at concentrations exceeding the GWQS in groundwater samples collected from all monitoring wells. General chemistry parameters were also detected exceeding the GWQS in the groundwater samples collected from monitoring wells LS-3 and LS-4. Similar to previous groundwater sampling events, the sodium levels in these two wells are exceptionally high. The elevated sodium levels, as well as chlorides and other dissolved solids deems the shallow groundwater as unusable for potable use. The following table summarizes the laboratory results.

Client Sample ID:				LS-1R	LS-2	LS-3	LS-4	
Lab Sample ID:		NJ NJ	NJ Interim	JD33587-3	JD33587-4	JD33587-5	JD33587-6	
Date Sampled:		Groundwater	Groundwater	10/15/2021	10/15/2021	10/15/2021	10/15/2021	
Matrix		Criteria	Criteria	Ground Water	Ground Water	Ground Water	Ground Water	
MS Volatiles (SW846 82600	0)							
Benzene	ug/l	1		ND (0.43)	ND (0.43)	1.1	5.1	
Tert Butyl Alcohol	ug/I	100		ND (5.8)	ND (5.8)	1420	94.2	
Metals Analysis								
Ars enic	ug/l	3		8.1	26.4	4.3	22	
Iron	ug/I	300		9180	1890	45200	9950	
Manganes e	ug/I	50		1290	180	1320	261	
Sodium	ug/I	50000		70800	107000	1320000	423000	
General Chemistry								
Chloride	mg/I	250	-	52.4	211	3270	764	
Nitrogen, Ammonia	mg/I	3		0.92	1.5	10	34.8	
Solids, Total Dissolved	mg/I	500		240	497	4740	1100	

Blue shading indicates any exceedance of GWQS

3.7 Conclusions

The main contaminants of concern for the South Landfarm groundwater are benzene, TBA, and arsenic. A summary of benzene, TBA, and arsenic concentrations for the last 12 quarterly groundwater sampling events is included below. Analytical results for the South Landfarm are summarized on **Figure 8.**

Benzene Concentrations

Monitoring Well LS-3

Benzene concentrations have ranged from a high of 61.6 ppb (January 2019) to a low of 1.1 ppb (October 2021) in the groundwater samples collected from monitoring well LS-3.

Monitoring Well LS-4

Benzene concentrations have fluctuated from a high of 20.4 ppb (July 2019) to a low of 0.73 ppb (January 2020) in the groundwater samples collected from monitoring well LS-4.

The following table summarizes the benzene concentrations for monitoring wells LS-3 and LS-4 from January 2019 through October 2021.

Well ID	CMOC	1/17/2010	4/17/2010	7/11/2010	10/22/2010	1/22/2020	4/14/2020	7/16/2020	10/0/2020	1/20/2021	4/15/2021	7/15/2021	10/15/2021
well ID	GWQS	1/1//2019	4/1//2019	//11/2019	10/22/2019	1/23/2020	4/14/2020	//16/2020	10/8/2020	1/29/2021	4/15/2021	//15/2021	10/15/2021
LS-3	1	61.6	58.2	15.3	10.5	51.4	51.5	10	3.9	56	41.2	7	1.1
LS-4	1	2.2	5.9	20.4	4.2	0.73	1.1	5.3	3.5	0.77	1.7	7.9	5.1

TBA Concentrations

TBA has only been detected in two of the South Landfarm monitoring wells: LS-3 and LS-4. TBA concentrations have been consistently detected at concentrations over the GWQS for the last 12 sampling events for monitoring well LS-3. However, TBA concentrations have fluctuated in well LS-4 over the last 12 groundwater sampling events and TBA was not detected at a concentration exceeding the GWQS for the last nine groundwater sampling events. The following table summarizes the TBA concentrations from January 2019 through October 2021 for monitoring well LS-3.

Well ID	GWQS	1/17/2019	4/17/2019	7/11/2019	10/22/2019	1/23/2020	4/14/2020	7/16/2020	10/8/2020	1/29/2021	4/15/2021	7/15/2021	10/15/2021
LS-3	100	239	210	530	801	337	387	977	1070	543	504	1330	1420

Arsenic Concentrations

Arsenic concentrations have been generally consistent for the last 12 quarterly groundwater sampling events for samples collected from all South Landfarm monitoring wells, excluding monitoring wells LS-2 and LS-4. Arsenic concentrations have fluctuated in the groundwater samples collected from monitoring wells LS-2 and LS-4. The following table summarizes the arsenic concentrations from January 2019 through October 2021.

Well ID	GWQS	1/17/2019	4/17/2019	7/11/2019	10/22/2019	1/23/2020	4/14/2020	7/16/2020	10/8/2020	1/29/2021	4/15/2021	7/15/2021	10/15/2021
LS-1R	3	8.3	10.8	19.6	23.4	12.9	6.5	19.4	11.9	9.5	7.5	10.5	8.1
LS-2	3	29.7	41.8	46.7	104	28.4	31.6	59.7	43.6	29	37.6	43.9	26.4
LS-3	3	6.1	8.2	9.7	11	11.3	8	12.6	12.7	7.1	7.4	11.7	4.3
LS-4	3	15.9	22.7	29.6	20.9	19.8	15.4	29.2	24.2	14.3	14.8	24	5.1

Laboratory reports for the South Landfarm July and October 2021 quarterly sampling events are included in **Appendix B**.

4.0 No. 1 Landfarm

4.1 Historic Information

The No. 1 Landfarm began operations in December 1985 under a revised Part A Interim Status Permit granted by the NJDEP on April 26, 1984 and the RCRA Industrial Waste Management Facility (IWMF) Operating Permit (Interim NJPDES Discharge to Groundwater Permit #0028878 issued in April 1985) for operation of the No. 1 Landfarm.

The No. 1 Landfarm is lined with an impermeable compacted clay liner. Above the clay liner is a leachate collection system, which collects water that that has percolated through the treatment zone of the Landfarm. The leachate collection system was designed not to allow any leachate (soil-pore water) discharges into the groundwater.

The No. 1 Landfarm was utilized for waste disposal beginning in 1985. The Landfarm was permitted to treat four RCRA hazardous waste streams - API Separator Sludge (K-051), heat exchanger bundle cleaning sludge (K-050), leaded tank bottoms (K-052), and Tetraethyl Lead (TEL) tank bottoms (P-110). In the November 2020 Comment Letter, the NJDEP requested additional information regarding dimersol materials potentially being applied to the No. 1 Landfarm. There is no permit documentation which indicates that dimersol materials were ever applied to the No. 1 Landfarm.

4.2 Site Specific Geology and Hydrogeology

The No. 1 Landfarm area was constructed on top of dredged sediments from the Arthur Kill, as indicated in the May 10, 1984 RCRA Part B Permit Application.

The North Drainage Ditch is a tidal stream adjacent to the north end of the Landfarm and runs west to east. This ditch is a transitory municipal storm water drainage channel.

During monitoring well L1-2 installation, a gravel layer was encountered that may have been applied as fill within the bed of a buried tributary to the Smith Creek, which existed prior to construction of the refinery facility. Smith Creek and its tributaries were filled in before and/or as the facility was constructed.

A pumping test was conducted on well L1-2 on April 3, 1987. The results from this pumping test were provided in the 2001 Comprehensive Management Plan (CMP). Based on this data, it has been estimated that the velocity of the groundwater in the No. 1 Landfarm area to be approximately 5 feet per day (feet/day). This velocity is consistent with typical gravelly sand horizons under the relatively steep hydraulic gradient observed in this area. This is more than an order of magnitude faster than other observed locations at the facility.

4.3 Hydraulic Monitoring Results

On July 10 and October 7, 2021; depth to water measurements were collected from the No. 1 Landfarm monitoring wells L1-1 through L1-4, BG-2, and BG-3. Groundwater elevation contour data from the July and October 2021 monitoring events are summarized in **Table 1.**

Groundwater flow direction is generally to the north, northeast toward the North Drainage Ditch, which is consistent with historic observations.

Groundwater contour maps are included as Figure 9 and Figure 10.

4.4 Groundwater Monitoring

On July 13 and October 13, 2021, groundwater samples were collected via low-flow sampling methodology in accordance with the NJDEP's *FSPM*. Groundwater sampling protocols are detailed in **Section 2.4**.

Groundwater monitoring records, which include low flow field worksheets and calibration information, are included in **Appendix A**.

Groundwater samples were collected from monitoring wells L1-1 through L1-4, BG-2, and BG-3 on July 13, 2021 and October 13, 2021. The July and October 2021 leachate samples were collected directly from the sampling port, located prior to treatment, in the leachate collection system. SGS of Dayton, New Jersey (NJ NELAP Certification No. 12129) provided the analytical services.

Soil samples were collected on September 16, 2021 from three zones in the No.1 Landfarm and analyzed for VOCs, SVOCs, metals, and general chemistry parameters.

4.5 Groundwater Analytical Results – July 2021

On July 13, 2021, groundwater samples were collected from monitoring wells L1-1 through L1-4, BG-2, and BG-3, and analyzed for select VOCs, Semi-Volatile Organic Compounds (SVOCs), metals, and general chemistry parameters in accordance with the Draft Interim NJPDES Permit #NJ0028878. Analytical results from the July 2021 No. 1 Landfarm groundwater sampling event are summarized in **Table 6**.

Targeted VOCs and SVOCs were not detected at concentrations exceeding the GWQS in the groundwater samples collected from any No. 1 Landfarm monitoring wells. Select metals were detected at concentrations exceeding the GWQS in groundwater samples collected from all monitoring wells, except for monitoring well L1-4. The following table summarizes the laboratory results.

Client Sample ID:		NJ Groundwater	L1-1	L1-2	L1-3	L1-4	BG-2	BG-3
Lab Sample ID:		Criteria (NJAC	JD28114-1	JD28114-3	JD28114-6	JD28114-7	JD28114-2	JD28114-8
Date Sampled:		7:9C 9/4/18) ¹	7/13/2021	7/13/2021	7/13/2021	7/13/2021	7/13/2021	7/13/2021
Matrix:			Ground Water					
Metals Analysis								
Aluminum	ug/l	200	14100	<200	285	<200	297	<200
Arsenic	ug/l	3	13.2	23.7	16.9	<3.0	6.1	8
Iron	ug/l	300	30800	22400	4530	149	3530	14400
Lead	ug/l	5	28.6	<3.0	<3.0	<3.0	<3.0	<3.0
Manganese	ug/l	50	135	296	139	<15	38.5	335
Sodium	ug/l	50000	28400	113000	51200	<10000	20800	20500

Blue shading indicates any exceedance of GWQS

4.6 Groundwater Analytical Results – October 2021

On October 13, 2021, groundwater samples were collected from monitoring wells L1-1 through L1-4, BG-2, and BG-3, and analyzed for select VOCs, SVOCs, metals, and general chemistry parameters in accordance with the Draft Interim NJPDES Permit #NJ0028878. Analytical results from the October 2021 No. 1 Landfarm groundwater sampling event are summarized in **Table 7**.

Targeted VOCs and SVOC were not detected in the groundwater samples at concentrations exceeding the GWQS in any No. 1 Landfarm monitoring wells. Select metals were detected at concentrations above the GWQS in groundwater samples collected from all monitoring wells, except for monitoring well L1-4. The following table summarizes the laboratory results.

Client Sample ID:		N. I	L1-1	L1-2	L1-3	L1-4	BG-2	BG-3
Lab Sample ID:		NJ	JD33461-2	JD33461-3	JD33461-4	JD33461-5	JD33461-6	JD33461-7
Date Sampled:		Groundwater Criteria	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021
Matrix:			Ground Water					
Metals Analysis								
Aluminum	ug/l	200	851	<200	<200	<200	<200	<200
Arsenic	ug/l	3	<1.0	21.4	21.1	1.2	2.6	12.9
Iron	ug/l	300	790	30900	31500	<100	8820	20200
Manganese	ug/l	50	15	448	582	18.8	85.6	359
Sodium	ug/l	50000	115000	192000	102000	<10000	74700	37300

Blue shading indicates any exceedance of GWQS

4.7 Additional Monitoring – Leachate and Soil Sampling

Leachate Sampling

A leachate sample is collected tri-annually and samples were collected on July 6, 2021 and October 4, 2021. The Leachate sample is a pre-treatment sample and is analyzed for VOCs, SVOCs, Metals, and general chemistry. Analytical results from the July and October 2021 No. 1 Landfarm Leachate samples are summarized in **Table 8**.

Targeted VOCs and SVOCs were not detected at concentrations exceeding the GWQS in the leachate sample. Arsenic was detected at 6.3 ppb (July 2021) and 11.3 ppb (October 2021) which exceeds the GWQS of 3.0 ppb.

Client Sample ID:			LEACHATE	LEACHATE				
Lab Sample ID:		N J Groundwater	JD27742-1	JD32779-1				
Date Sampled:		Criteria	7/6/2021	10/4/2021				
M atrix:			Water	Water				
M etals Analysis								
Arsenic	ug/l	3	6.3	11.3				

Soil Sampling

Soil samples were collected from three zones in the No. 1 Landfarm and analyzed for VOCs, SVOCs, metals, and general chemistry parameters. The three zones are defined as follows: the Zone of Incorporation (ZOI) is the interval located 0.5 to 1 foot below grade, the Treatment Zone (TZ) is the interval located 1.5-3.0 feet below grade, and the Unsaturated Zone (UZ) is the interval located 3.0 to 4.0 feet below grade.

Targeted VOCs were not detected over the applicable soil standards for all zones that were sampled. Benzo(a)pyrene and arsenic were detected over applicable soil standards for the Treatment Zone and Unsaturated Zone samples. The following table summarizes the analytical results. Soil sample results are summarized in **Table 9**.

Client Sample ID: Lab Sample ID: Date Sampled:		NJ Soil Remediation Standards Ingestion Dermal Exp. Pathway Residential	NJ Soil Remediation Standards Ingestion Dermal Exp. Pathway Non-Residential	NJ Soil Remediation Standards InhalationI Exp. Pathway Residential	NJ Soil Remediation Standards InhalationI Exp. Pathway Non- Residential	ZOI(0.0-1.5') JD31718-1 9/16/2021	TZ(1.5-3.0') JD31718-2 9/16/2021	UZ(3.0-4.0') JD31718-3 9/16/2021		
Matrix:		1100100111001		Hoolaonaa	11001001111011	Soil	Soil	Soil		
MS Semi-volatiles (SW846 8270E	=)									
Benzo(a)pyrene	mg/kg	0.51	2.3	7800	16000	0.411	1.01	0.792		
Metals Analysis										
Arsenic	mg/kg	19	19	1100	5200	46.5	33.6 °	23.0 °		
^e Elevated detection limit due to dilution required for high interfering element.										

4.8 Conclusions

Arsenic has been consistently detected in the groundwater samples collected from the No. 1 Landfarm monitoring wells. A summary of the arsenic concentrations for the last 12 quarterly groundwater sampling events is included below. Analytical data for the No. 1 landfarm is summarized on **Figure 11**.

Arsenic concentrations have been generally consistent for the last 12 quarterly groundwater sampling events for wells L1-2, L1-3, BG-2, and BG-3. The following table summarizes the arsenic concentrations from January 2019 through October 2021.

Well ID	GWQS	1/16/2019	4/16/2019	7/11/2019	10/23/2019	1/23/2020	4/14/2020	7/15/2020	10/7/2020	1/28/2021	4/13/2021	7/13/2021	10/13/2021
L1-2	3	19	16.6	22.6	25.4	15.9	19	27.3	29.3	18.2	15.9	23.7	21.4
L1-3	3	6.6	7.5	13.5	21.8	8.7	5.2	12.5	28.2	10	5.9	16.9	21.1
BG-2	3	7.5	9.1	15.7	6.1	7	14.3	15	19.2	11.7	7.6	6.1	2.6
BG-3	3	7	2.7	6.4	14	5.6	3.8	30.1	12.6	5.6	<3.0	8	12.9

Laboratory reports for the South Landfarm July and October 2021 quarterly sampling events are included in **Appendix B**.

5.0 Summary and Implementation Schedule

Remedial Action Workplans (RAWs) were submitted for the three landfarms in August/September 2016. The status for each Landfarm is as follows:

North Landfarm

- The NJDEP/USEPA provided comments regarding the RAW in June 2018.
- The comments were incorporated into the 90% Soil Remedial Action Design (RAD) and submitted on October 24, 2019.
- The NJDEP and USEPA issued an approval letter for the 90% design on April 28, 2020.
- The current property owner (Buckeye) completed lining the tankfield located directly adjacent to the North Landfarm in 2021. A survey of current Site conditions is currently in process. Once the Site survey is completed, the 100% RAD will be finalized and submitted to the NJDEP and EPA. The targeted submittal for the 100% RAD is the 2nd Quarter 2022.
- As requested by the NJDEP, a Pre & Post Closure Groundwater Sampling Plan is being prepared for the North Landfarm and will be submitted once the No. 1 Landfarm Pre & Post Closure Groundwater Sampling Plan is reviewed and approved by the NJDEP/EPA (see the No. 1 Landfarm summary below).

South Landfarm

- The NJDEP/USEPA provided comments regarding the RAW in March 2019.
- Preparation of the RTC and the 90% RAD is currently underway and will incorporate the NJDEP/USEPA comments.

 As requested by the NJDEP, a Pre & Post Closure Groundwater Sampling Plan is being prepared for the South Landfarm and will be submitted once the No. 1 Landfarm Pre & Post Closure Groundwater Sampling Plan is reviewed and approved by the NJDEP/EPA (see the No. 1 Landfarm summary below).

Landfarm No. 1

- The 100% Soil RAD for the landfarm engineering control was submitted in May 2019.
- Based on October 2019 NJDEP/USEPA comments, a revised 100% Soil RAD for was submitted on December 17, 2019.
- The NJDEP/USEPA issued an approval letter for the 100% design on April 28, 2020.
- The following permits were submitted in June and October 2020 and have been approved by the NJDEP on the dates provided:
 - Soil Erosion & Sediment Control Plan (Freehold Soil Conservation District), approved on August 17, 2020
 - Flood Hazard Area Individual Permit (NJDEP Land Use Regulation Program), approved on September 25, 2020
 - Waterfront Development GP-11 Permit (NJDEP Land Use Regulation Program), approved on September 25, 2020
 - Freshwater Wetland GP-4 Permit (NJDEP Land Use Regulation Program), approved on September 25, 2020
 - NJPDES B4B Permit (NJDEP Wastewater Program), approved on September 15, 2020
 - Treatment Works Approval TWA-1 Permit (NJDEP Wastewater Program), approved on February 18, 2021
 - NJPDES Individual Permit (NJDEP Stormwater Program), deemed administratively complete on 10/1.
- As requested by the NJDEP, the Pre & Post Closure Groundwater Sampling Plan was submitted to the EPA and NJDEP in August 2021 and is currently being reviewed. Once the review is complete, the proposed groundwater sampling plan will be implemented.
- Remedial capping activities began in October 2021 and are still ongoing.
 Periodic updates will be provided to the NJDEP and EPA.

Semi-annual Groundwater Monitoring reports that present and discuss the current sampling activities will continue to be submitted pending final closure of the landfarms. The next groundwater sampling events are scheduled to be completed in January and April 2022.

FIGURES

TABLES

Table 1
Quarterly Landfarms Monitoring Well Gauging Data
Hess Corporation - Former Port Reading Complex
750 Cliff Road
Port Reading, Middlesex County, New Jersey

Groundwater Gauging Data										
Well I.D.	Date	Depth to Water	DTB from TOC	TOC Elevation	Water Elevation	PID				
LN-SW	7/12/2021	3.00	NA	-0.31	3.31	NA				
LN-1	7/12/2021	4.04	14.86	10.37	6.33	0.0				
LN-2	7/12/2021	5.30	12.00	9.65	4.35	0.0				
LN-3	7/12/2021	4.89	13.12	8.92	4.03	0.0				
LN-4	7/12/2021	6.97	15.20	10.69	3.72	0.0				
LN-5	7/12/2021	6.06	17.55	10.57	4.51	0.0				
LN-6	7/12/2021	7.96	17.80	12.15	4.19	0.0				
LN-7	7/12/2021	8.33	17.90	13.30	4.97	0.0				
PER-4	7/12/2021	NM	16.45	10.30	#VALUE!	NM				
LPG-2	7/12/2021	NM	9.60	7.05	#VALUE!	NM				
DB-SW	7/12/2021	7.00	NA	-0.11	7.11	NA				
LS-1R	7/12/2021	2.52	15.75	12.25	9.73	0.0				
LS-2	7/12/2021	1.85	12.00	9.75	7.90	0.0				
LS-3	7/12/2021	0.60	12.60	8.40	7.80	0.4				
LS-4	7/12/2021	1.22	13.13	9.28	8.06	3.4				
TM-6R	7/12/2021	4.06	19.80	14.26	10.20	7.3				
PL-1RR	7/12/2021	0.40	14.70	7.36	6.96	7.8				
PL-3R	7/12/2021	2.88	18.80	10.16	7.28	0.0				
PL-6RR	7/12/2021	0.60	15.00	6.88	6.28	0.0				
PL-9R	7/12/2021	1.61	19.90	9.11	7.50	0.0				
L1-SW	7/12/2021	NM	NA	-0.20	#VALUE!	NA				
L1-1	7/12/2021	NM	NM	9.91	#VALUE!	NM				
L1-2	7/12/2021	5.68	14.90	9.05	3.37	0.0				
L1-3	7/12/2021	6.05	10.90	9.33	3.28	0.0				
L1-4	7/12/2021	6.98	10.95	10.85	3.87	0.0				
BG-2	7/12/2021	1.86	9.20	6.96	5.10	0.0				
BG-3	7/12/2021	2.79	10.70	10.31	7.52	0.0				
SP-1	7/12/2021	NM	NM	8.95	#VALUE!	NM				
SP-2	7/12/2021	NM	NM	10.18	#VALUE!	NM				
SP-3	7/12/2021	3.33	16.90	9.33	6.00	0.0				

*Anomalous measurement/not used in contour figure LNAPL - Light non Aqueous Phase Liquids

NA - Not Applicable DTB - Depth to Bottom

All Measurements are in feet TOC - Top of Casing NM - Not Measured

Table 1
Quarterly Landfarms Monitoring Well Gauging Data
Hess Corporation - Former Port Reading Complex
750 Cliff Road
Port Reading, Middlesex County, New Jersey

		Groui	ndwater Gauging	g Data		
Well I.D.	Date	Depth to Water	DTB from TOC	TOC Elevation	Water Elevation	PID
LN-SW	10/7/2021	3.00	NA	-0.31	3.31	NA
LN-1	10/7/2021	5.22	14.86	10.37	5.15	0.0
LN-2	10/7/2021	5.70	12.00	9.65	3.95	0.0
LN-3	10/7/2021	5.29	13.12	8.92	3.63	0.0
LN-4	10/7/2021	7.14	15.20	10.69	3.55	0.0
LN-5	10/7/2021	6.52	17.55	10.57	4.05	0.0
LN-6	10/7/2021	8.37	17.80	12.15	3.78	0.0
LN-7	10/7/2021	9.00	17.90	13.30	4.30	0.0
PER-4	10/7/2021	6.45	16.45	10.30	3.85	0.0
LPG-2	10/7/2021	3.75	9.60	7.05	3.30	0.0
DB-SW	10/7/2021	7.50	NA	-0.11	7.61	NA
LS-1R	10/7/2021	3.6	15.75	12.25	8.65	0.0
LS-2	10/7/2021	3.19	12.00	9.75	6.56	0.0
LS-3	10/7/2021	1.31	12.60	8.40	7.09	0.4
LS-4	10/7/2021	2.10	13.13	9.28	7.18	3.4
TM-6R	10/7/2021	3.89	19.80	14.26	10.37	7.3
PL-1RR	10/7/2021	1.23	14.70	7.36	6.13	7.8
PL-3R	10/7/2021	3.89	18.80	10.16	6.27	0.0
PL-6RR	10/7/2021	0.88	15.00	6.88	6.00	0.0
PL-9R	10/7/2021	2.65	19.90	9.11	6.46	0.0
L1-SW	10/7/2021	1.50	NA	-0.20	1.70	NA
L1-1	10/7/2021	NM	NM	9.91	#VALUE!	NM
L1-2	10/7/2021	5.82	14.90	9.05	3.23	0.0
L1-3	10/7/2021	6.38	10.90	9.33	2.95	0.0
L1-4	10/7/2021	7.62	10.95	10.85	3.23	0.0
BG-2	10/7/2021	2.02	9.20	6.96	4.94	0.0
BG-3	10/7/2021	3.41	10.70	10.31	6.90	0.0
SP-1	10/7/2021	NM	NM	8.95	#VALUE!	NM
SP-2	10/7/2021	NM	NM	10.18	#VALUE!	NM
SP-3	10/7/2021	3.57	16.90	9.33	5.76	0.0

*Anomalous measurement/not used in contour figur LNAPL - Light non Aqueous Phase Liquids

NA - Not Applicable DTB - Depth to Bottom

All Measurements are in feet TOC - Top of Casing NM - Not Measured

Table 2 North Landfarm July 2021 - Analytical Data Hess Corporation - Former Port Reading Complex 750 Cliff Road Port Reading, Middlesex County, New Jersey

Client Sample ID: Lab Sample ID: Date Sampled:		NJ Groundwater Criteria	NJ Interim Groundwater	LN-1 JD28201-1 7/14/2021	LN-2 JD28201-2 7/14/2021	LN-3 JD28201-3 7/14/2021	LN-4 JD28201-4 7/14/2021	LN-5 JD28201-5 7/14/2021	LN-6 JD28201-6 7/14/2021	LN-7 JD28201-7 7/14/2021
Matrix:		Criteria	Criteria	Ground Water	Ground Wat					
MS Volatiles (SW846 8260D)							•	•		
cetone	ug/l	6000	-	ND (3.1) a	ND (3.1) b					
Benzene Bromochloromethane Bromodichloromethane	ug/l ug/l	- 1 - 1	-	ND (0.43) ND (0.48) ND (0.45)						
Bromoform Bromomethane	ug/l	4		ND (0.63) ND (1.6)						
2-Butanone (MEK) Carbon disulfide	ug/l ug/l	300 700	-	ND (6.9) ND (0.46)						
Carbon tetrachloride Chlorobenzene Chloroethane	ug/l ug/l	1 50	-	ND (0.55) ND (0.56)	ND (0.55) ND (0.56) ND (0.73)					
Chloroethane Chloroform Chloromethane	ug/l ug/l	70	5	ND (0.73) ND (0.50) ND (0.76)						
Cyclohexane 1,2-Dibromo-3-chloropropane	ug/l ug/l ug/l	0.02	-	ND (0.78) ND (0.53)						
Dibromochloromethane 1,2-Dibromoethane	ug/l ug/l	1 0.03	-	ND (0.56) ND (0.48)						
,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/l ug/l	600 600	-	ND (0.53) ND (0.54)						
J,4-Dichlorobenzene Dichlorodifluoromethane	ug/l ug/l	75 1000	-	ND (0.51) ND (0.56)	ND (0.51 ND (0.56					
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene	ug/l ug/l ug/l	50 2	-	ND (0.57) ND (0.60) ND (0.59)	ND (0.57 ND (0.60) ND (0.59)					
rans-1,2-Dichloroethene	ug/l	70 100	-	ND (0.51) ND (0.54)	ND (0.51 ND (0.54					
,2-Dichloropropane cis-1,3-Dichloropropene	ug/l ug/l	1 -	-	ND (0.51) ND (0.47)	ND (0.51 ND (0.47					
rans-1,3-Dichloropropene Ethylbenzene	ug/l ug/l	700	-	ND (0.43) ND (0.60)						
Freon 113 2-Hexanone	ug/l ug/l	20000 40 700	-	ND (0.58) ND (2.0) ND (0.65)						
sopropylbenzene Methyl Acetate Methylcyclohexane	ug/l ug/l ug/l	7000	-	ND (0.65) ND (0.80) ND (0.60)	ND (0.65) ND (0.80) ND (0.60)	ND (0.80) ND (0.60)	ND (0.65) ND (0.80) ND (0.60)	ND (0.65) ND (0.80) ND (0.60)	ND (0.80) ND (0.60)	ND (0.80) ND (0.60)
Methyl Tert Butyl Ether 1-Methyl-2-pentanone(MIBK)	ug/l ug/l	70	-	ND (0.51) ND (1.9)	ND (0.51) ND (1.9)	ND (0.51) ND (1.9)	0.63 J ND (1.9)	ND (0.51) ND (1.9)	ND (0.51) ND (1.9)	ND (0.51 ND (1.9)
Methylene chloride Styrene	ug/l ug/l	3 100	-	ND (1.0) ND (0.49)	ND (1.0) ND (0.49					
Tert Butyl Alcohol 1,1,2,2-Tetrachloroethane Tetrachloroethene	ug/l ug/l	100 1	-	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	10.2 ND (0.65) ND (0.90)	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	ND (5.8) ND (0.65
Foluene 1,2,3-Trichlorobenzene	ug/l ug/l ug/l	600	-	ND (0.90) ND (0.53) ND (0.50)	ND (0.90) ND (0.53) ND (0.50)	ND (0.53) ND (0.50)	ND (0.90) ND (0.53) ND (0.50)	ND (0.90) ND (0.53) ND (0.50)	ND (0.90) ND (0.53) ND (0.50)	ND (0.90 ND (0.53 ND (0.50
1,2,4-Trichlorobenzene	ug/l ug/l	9 30	-	ND (0.50) ND (0.54)	ND (0.50 ND (0.54					
1,1,2-Trichloroethane	ug/l ug/l	3	-	ND (0.53) ND (0.53)	ND (0.53 ND (0.53					
Frichlorofluoromethane Finyl chloride	ug/l ug/l	2000	-	ND (0.40) ND (0.79)	ND (0.40 ND (0.79					
n,p-Xylene	ug/l	-	-	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.78) ND (0.59)	ND (0.78) ND (0.59)	ND (0.78) ND (0.59)	ND (0.78 ND (0.59
-Xylene ylene (total) IS Volatile TIC otal TIC, Volatile	ug/l ug/l ug/l	1000	-	ND (0.59) ND (0.59)	ND (0.59)	ND (0.59				
Xylene (ylene (total) MS Volatile TIC fotal TIC, Volatile 3C/LC Semi-volatiles (EPA 60 gamma-BHC (Lindane) indrin	ug/l ug/l ug/l 8.3)	0.03	-	ND (0.59) 0 ND (0.0045) ND (0.0044)	ND (0.59) 0 ND (0.0045) ND (0.0044)	ND (0.59) 0 ND (0.0050) ND (0.0049)	ND (0.59) 36.8 J ND (0.0046) ND (0.0045)	0 ND (0.0050) ND (0.0050) ND (0.0049)	0 ND (0.0050) ND (0.0049)	0 ND (0.004 ND (0.004 ND (0.004
Xylene (ylene (total) MS Volatile TIC rotal TIC, Volatile 3G/LC Semi-volatiles (EPA 60 pamma-BHC (Lindane) indrin	ug/l ug/l ug/l	-	-	0 ND (0.0045)	0 ND (0.0045)	0 ND (0.059)	ND (0.59) 36.8 J ND (0.0046)	0 ND (0.0050)	0 ND (0.059)	ND (0.59 0 ND (0.004 ND (0.004 ND (0.005
x-Xylene (Vylene (Iotal) MS Volatile TIC Total TIC, Volatile 3C/LC Semi-volatiles (EPA 60 pamma-BHC (Lindane) ndrin foxaphene	ug/l ug/l ug/l 8.3) ug/l ug/l ug/l ug/l	0.03 2 40 2	-	ND (0.59) 0 ND (0.0045) ND (0.0045) ND (0.0057) ND (0.075)	ND (0.59) 0 ND (0.0045) ND (0.0044) ND (0.0057)	ND (0.59) 0 ND (0.0050) ND (0.0049) ND (0.0063)	ND (0.59) 36.8 J ND (0.0046) ND (0.0045) ND (0.0058)	ND (0.59) 0 ND (0.0050) ND (0.0049) ND (0.0063)	ND (0.59) 0 ND (0.0050) ND (0.0049) ND (0.0063)	ND (0.59 0 ND (0.004 ND (0.004 ND (0.005
EXylene (yolane (total) 48 Volatile TIC fotal TIC, Volatile 3CILC Semi-volatiles (EPA 60) jamma-BHC (Lindane) ndrin bethoxyloir oxophene 3CILC Semi-volatiles (SW346 2.4-D 2.4-5 IP (Silves)	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u	0.03	-	ND (0.59) O IND (0.0045) ND (0.0044) ND (0.0057) ND (0.075) ND (0.076) ND (0.042)	ND (0.59) O ND (0.0045) ND (0.0044) ND (0.0057) ND (0.075) ND (0.076)	ND (0.59) O ND (0.0050) ND (0.0063) ND (0.083) ND (0.083)	ND (0.59) 36.8 J ND (0.0046) ND (0.0046) ND (0.0045) ND (0.076) ND (0.076)	ND (0.59) 0 ND (0.0050) ND (0.0049) ND (0.0083) ND (0.083)	ND (0.59) ND (0.0050) ND (0.0063) ND (0.083) ND (0.086) ND (0.042)	ND (0.59
Xylene (cyta) AS Volatile TIC Fotal TIC, Volatile SCFLC Semi-volatiles (EPA 60 gamma-BHC (Indiane) midrin dethoxycitor oxaphene SCFLC Semi-volatiles (SW846 L4-D L4-FT (Silves) J4-STP (Silves)	ug/l ug/l ug/l 8.3) ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.03 2 40 2	-	ND (0.59) O ND (0.0045) ND (0.0044) ND (0.0057) ND (0.075) ND (0.075) ND (0.042) ND (0.013) ND (0.021)	ND (0.59) O ND (0.0045) ND (0.0044) ND (0.0057) ND (0.075) ND (0.075) ND (0.042) ND (0.013) ND (0.021)	ND (0.59) ND (0.0050) ND (0.0063) ND (0.0063) ND (0.083) ND (0.0083) ND (0.0083) ND (0.013) ND (0.013) ND (0.013)	ND (0.59) 36.8 J ND (0.0046) ND (0.0045) ND (0.0058) ND (0.076) ND (0.076) ND (0.042) ND (0.013) ND (0.021)	ND (0.59) ND (0.0050) ND (0.0063) ND (0.0063) ND (0.083) ND (0.042) ND (0.013) ND (0.013) ND (0.021)	ND (0.0050) ND (0.0050) ND (0.0063) ND (0.083) ND (0.083) ND (0.042) ND (0.013) ND (0.013) ND (0.021)	ND (0.59) 0 ND (0.004) ND (0.005) ND (0.005) ND (0.076) ND (0.042) ND (0.042) ND (0.031) ND (0.031)
-Xýjene (cytia) AS Volatile TIC fotal TIC, Volatile SCHC Semi-volatiles (EPA 60 parmma BHC (Indane) ndrán dethoxycitor oxophene SCHC Semi-volatiles (SW346 4.4.5 TP (Silved) 2.4.5 TP (Silved) Josephapo Josepha	ug/l ug/l ug/l	70 60 - 200	-	ND (0.045) ND (0.0045) ND (0.0045) ND (0.0057) ND (0.075) ND (0.075) ND (0.075) ND (0.013) ND (0.013) ND (0.021) ND (0.057)	ND (0.59) O ND (0.0045) ND (0.0044) ND (0.0057) ND (0.0057) ND (0.013) ND (0.013) ND (0.021) ND (0.021) ND (0.027)	ND (0.59) ND (0.0050) ND (0.0060) ND (0.0063) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.013) ND (0.021) ND (0.021) ND (0.021) ND (0.057)	ND (0.59) 36.8 J ND (0.0046) ND (0.0045) ND (0.0058) ND (0.0058) ND (0.076) ND (0.013) ND (0.013) ND (0.013) ND (0.021) ND (0.021) ND (0.057)	ND (0.059) ND (0.0050) ND (0.0069) ND (0.0063) ND (0.0083)	ND (0.59) ND (0.0050) ND (0.0060) ND (0.0063) ND (0.0063) ND (0.0083)	ND (0.094 ND (0.004 ND (0.005 ND (0.005 ND (0.042 ND (0.021 ND (0.021 ND (0.021 ND (0.021 ND (0.021 ND (0.021
-Xylene (yolan) AS Volatile TIC rotal TIC, Volatile SCILC Semi-volatiles (EPA 60 parmina-BHC (Indane) norin methodopylotic rocaphene SCILC Semi-volatiles (SW846 L4-D L4-STP (Silved) L4-STP (Silved) J-J-STP J-J-STP J-J-STP J-J-J-STP J-J-J-STP J-J-J-STP J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug	0.03 2 40 2 70 60		ND (0.045) ND (0.0045) ND (0.0046) ND (0.0057) ND (0.075) ND (0.075) ND (0.011) ND (0.011) ND (0.015) ND (0.017) ND (0.017)	ND (0.095) O ND (0.0045) ND (0.0046) ND (0.0057) ND (0.0075) ND (0.075) ND (0.012) ND (0.021) ND (0.021) ND (0.017) ND (0.015) ND (0.11) ND (0.15)	ND (0.059) O ND (0.0050) ND (0.0063) ND (0.0063) ND (0.0063) ND (0.066) ND (0.042) ND (0.011) ND (0.057) ND (0.11) ND (0.11)	ND (0.059) 36.8 J ND (0.0046) ND (0.0045) ND (0.0058) ND (0.0058) ND (0.076) ND (0.0051) ND (0.011) ND (0.011) ND (0.11) ND (0.11)	ND (0.059) ND (0.0050) ND (0.0063) ND (0.007) ND (0.011) ND (0.011)	ND (0.059) O ND (0.0050) ND (0.0063) ND (0.0063) ND (0.083) ND (0.083) ND (0.083) ND (0.083) ND (0.010) ND (0.011) ND (0.011) ND (0.011) ND (0.011) ND (0.011) ND (0.011)	ND (0.094 ND (0.004 ND (0.005 ND (0.005 ND (0.076 ND (0.076 ND (0.076 ND (0.071 ND (0.
-Xylene (yolan) AS Volatile TIC fotal TIC, Volatile SCILC Semi-volatiles (EPA 60 parmina-BHC (Indane) norin men and the thoughtic scaphene SCILC Semi-volatiles (SW846 -L4-D -L4-D -L4-STP (Silved) -L4-STP (S	ug/l	70 60 - 200		ND (0.59) O ND (0.0045) ND (0.0044) ND (0.0057) ND (0.006) ND (0.066) ND (0.010) ND (0.011) O(0.011) O(0	ND (0.59) 0 ND (0.0045) ND (0.0045) ND (0.0057) ND (0.0075) ND (0.0075) ND (0.0075) ND (0.011) ND (0.0071) ND (0.011) ND (0.0071) ND (0.11) ND (0.0071)	ND (0.59) 0 ND (0.0050) ND (0.0050) ND (0.0063) ND (0.0083) ND (0.0081) ND (0.0081) ND (0.021)	ND (0.59) 100 (0.0046) ND (0.0048) ND (0.0058) ND (0.0058) ND (0.076) ND (0.076) ND (0.076) ND (0.071) ND (0.071) ND (0.071) ND (0.071) ND (0.071) ND (0.071)	ND (0.59) 0 ND (0.0050) ND (0.0053) ND (0.0083) ND (0.083) ND (0.083) ND (0.083) ND (0.011) ND (0.011) ND (0.021)	ND (0.59) ND (0.050) ND (0.0050) ND (0.0051) ND (0.0063) ND (0.063) ND (0.063) ND (0.062) ND (0.051) ND (0	ND (0.59 ND (0.004 ND (0.004 ND (0.006 ND (0.076 ND (0.076 ND (0.076 ND (0.076 ND (0.071 ND (0.
-Xylene -Xyle	ug/l ug/l ug/l ug/l	70 60 60 - 200 - 77 7		ND (0.09) ND (0.0045) ND (0.0044) ND (0.0057) ND (0.075) ND (0.075) ND (0.075) ND (0.013) ND (0.021) ND (0.021) ND (0.011)° ND (0.11)°	ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0057) ND (0.0057) ND (0.075) ND (0.013) ND (0.021) ND (0.021) ND (0.011)	ND (0.059) ND (0.0050) ND (0.0064) ND (0.0663) ND (0.066) ND (0.041) ND (0.021) ND (0.051) ND (0.011)° ND (0.11)° ND (0.11)° ND (0.11)°	ND (0.59) 36.8 J ND (0.0046) ND (0.0045) ND (0.0045) ND (0.0076) ND (0.076) ND (0.076) ND (0.013) ND (0.021)	ND (0.059) 0 ND (0.0050) ND (0.0049) ND (0.0083) ND (0.068) ND (0.068) ND (0.061) ND (0.013) ND (0.021) ND (0.021) ND (0.027) ND (0.057) ND (0.015) ND (0.015) ND (0.015)	ND (0.059) ND (0.0050) ND (0.0063) ND (0.066) ND (0.066) ND (0.042) ND (0.021) ND (0.051)	ND (0.59 ND (0.004 ND (0.004 ND (0.006 ND (0.076 ND (0.076 ND (0.076 ND (0.076 ND (0.071 ND (0.
xXylene (cylene (cylene) (xylene (cylene) (xylene (cylene) (xylene (cylene) (xylene (cylene) (xylene)	ug/l	70 60 60 - 200 - 77 7		ND (0.59) O ND (0.0045) ND (0.0044) ND (0.0057) ND (0.006) ND (0.066) ND (0.010) ND (0.011) O(0.011) O(0	ND (0.59) 0 ND (0.0045) ND (0.0045) ND (0.0047) ND (0.0075) ND (0.0075) ND (0.0075) ND (0.0075) ND (0.0075) ND (0.0077)	ND (0.59) 0 ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0081) ND (0.0083)	ND (0.59) ND (0.0046) ND (0.0048) ND (0.0048) ND (0.0049) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.013) ND (0.013) ND (0.057) ND (0.057) ND (0.014) ND (0.057) ND (0.076)	ND (0.59) 0 ND (0.0050) ND (0.0053) ND (0.0083) ND (0.083) ND (0.083) ND (0.083) ND (0.011) ND (0.011) ND (0.021)	ND (0.59) ND (0.050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.066) ND (0.067) ND (0.057) ND (0.057) ND (0.057) ND (0.057) ND (0.059)	ND (0.59 ND (0.004 ND (0.004 ND (0.005 ND (0.005 ND (0.005 ND (0.015 ND (0.021 N
-Xylene (cytal) -Xylene (cyta	ug/l	70 60 		ND (0.59) ND (0.045) ND (0.0045) ND (0.0044) ND (0.0057) ND (0.0075) ND (0.075) ND (0.0	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0045) ND (0.0075)	ND (0.59) ND (0.050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.068) ND (0.068) ND (0.069) ND (0.071)	ND (0.59) ND (0.046) ND (0.0046) ND (0.0045) ND (0.0045) ND (0.0076) ND (0.076) ND (0.076) ND (0.076) ND (0.076) ND (0.077) ND (0.13) ND (0.057) ND (0.13) ND (0.057) ND (0.077) ND (0.178) ND (0.077) ND (0.178)	ND (0.059) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0049) ND (0.003) ND (0.003) ND (0.003) ND (0.003) ND (0.007)	ND (0.59) ND (0.050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083)	ND (0.59 ND (0.004 ND (0.004 ND (0.005 ND (0.005 ND (0.042 ND (0.05 ND (0.05 ND (0.05) ND (0.05 ND (0.05) ND (0.05
-Xylene (cital) AS Volatile TiC Cotal TiC, Volatile SC/LC Semi-volatiles (EPA 60 comma-BHC (Lindane) north As The (Silven) A-5-TP (Silven) A-6-TP (Silven) A-7-TP (Silv	ug/l	70 600 		ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075)	ND (0.59) 1	ND (0.59) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0083) ND (0.0081)	ND (0.59) ND (0.004e) ND (0.004e) ND (0.004s) ND (0.004s) ND (0.007e)	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0083) ND (0.083) ND (0.083) ND (0.083) ND (0.081) ND (0.021) ND (0.011)	ND (0.59) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0083) ND (0.0087)	ND (0.59 ND (0.004) ND (0.004) ND (0.005) ND (0.11) ND (0.005) ND
EXylene (cylar) EXylene (cylar) AS Volatile TIC Cotal TIC, Volatile BCILC Semi-volatiles (EPA 60 parmine-BHC (Indane) north Compression Compression Compression Compression CAS-TP (Silven) Disamba Disamba Disamba CEPA	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	70 60 60 - 7 7 7 60 - 7 7 7 - 7 0.3 - 3		ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075)	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0047) ND (0.0075)	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0081)	ND (0.59) ND (0.004e) ND (0.004e) ND (0.0045) ND (0.0045) ND (0.007e) ND (0.007e) ND (0.007e) ND (0.017e)	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0081) ND (0.0071) ND (0.021) ND (0.0057) ND (0.	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0081) ND (0.0081) ND (0.0081) ND (0.0087)	ND (0.59 ND (0.004 ND (0.004 ND (0.005 N
EXylene (cylene (cylene) (cy	Ug/l	70 60 60 		ND (0.59) ND (0.045) ND (0.0045) ND (0.0044) ND (0.0057) ND (0.0075) ND (0.00	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0042) ND (0.0053) ND (0.0042) ND (0.0053) ND (0.0072) ND (0.0072) ND (0.0072) ND (0.0072) ND (0.0073) ND (0.0	ND (0.59) ND (0.0046) ND (0.0046) ND (0.0045) ND (0.0045) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0077) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0053) ND (0.0063) ND (0.007) ND (0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0063) ND (0.0063) ND (0.007) ND (0.	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.006 ND (0.006 ND (0.007 ND (0.007 ND (0.017 ND (0.007 ND (0.017 ND (0.007 ND (0.017 ND (0.007 ND (0.
EXylene (cylune) (cy	ug/l	0.03 2 40 2 70 60 200 7 7 0.3 200 6 3 6000 1 4 70		ND (0.59) ND (0.0045) ND (0.0045) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0046) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0048) ND (0.0083) ND (0.00	ND (0.59) ND (0.0046) ND (0.0046) ND (0.0048) ND (0.0048) ND (0.0059) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0077) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0	ND (0.59) ND (0.050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0181) ND (0.0181) ND (0.0181) ND (0.0181) ND (0.0181) ND (0.0181) Second (0.088) Second (0.	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.005 ND (0.076 ND (0.013 N
xXylene (cylene (cylene) (cy	Ug/l	70 60 2 2 40 2 2 200 	-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075)	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0046) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0048) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0087) ND (0.057) ND (0.057)	ND (0.59) ND (0.0046) ND (0.0046) ND (0.0048) ND (0.0048) ND (0.0048) ND (0.0059) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0077) ND (0.0	ND (0.059) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.003) ND (0.	ND (0.59) ND (0.050) ND (0.0050) ND (0.0042) ND (0.0048) ND (0.0083) ND (0.0181) ND (0.0181) ND (0.0181) ND (0.0181) ND (0.0181) ND (0.0181) Section (0.081) ND (0.081) Section (0.081) Secti	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.007 ND (0.
EXylene (cyline) (cy	Ug/l	70 60 	-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0057) ND (0.0075) ND (0.0	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0046) ND (0.0041) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0042) ND (0.0053) ND (0.0042) ND (0.0053) ND (0.0072) ND (0.0	ND (0.59) ND (0.0046) ND (0.0046) ND (0.0045) ND (0.005) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0077) ND (0.00	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.007) ND	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0063) ND (0.0063) ND (0.0063) ND (0.007) ND (0	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.
-Xylene (cytal) -Xylene (cytal	Ug/l		-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0046) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0063) ND (0.0042) ND (0.0053) ND (0.007) ND (0	ND (0.59) ND (0.004e) ND (0.004e) ND (0.004e) ND (0.004s) ND (0.005) ND (0.07e) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0063) ND (0.0063) ND (0.0063) ND (0.007) ND (0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0053) ND (0.0049) ND (0.0053) ND (0.0053) ND (0.0057) ND (0.007) ND	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.007 ND (0.
EXylene (cylene (cylene) (cy	Ug/l		-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0046) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0042) ND (0.0053) ND (0.0063) ND (0.0063) ND (0.007) ND (ND (0.59) ND (0.004e) ND (0.004e) ND (0.004e) ND (0.004s) ND (0.005s) ND (0.007e) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0043) ND (0.0083) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0021) ND (0.0021) ND (0.0021) ND (0.0021) ND (0.0021) ND (0.0021) ND (0.0071) ND (0.0	ND (0.59) ND (0.004) ND (0.004) ND (0.004) ND (0.005) ND (0.005) ND (0.007)
EXylene (cylene (cylene) (cy	Ug/l	70 60 2 40 2 2 3 40 2 2 3 40 40 40 40 40 40 50000 2 4 40 40 50000 2 4 40 40 40 40 40 40 40 40 40 40 40 40 4	-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0042) ND (0.0043) ND (0.0043) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0042) ND (0.0042) ND (0.0043) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.013) ND (0.011) N	ND (0.59) ND (0.004e) ND (0.004e) ND (0.0045) ND (0.0045) ND (0.005) ND (0.007e) ND (0.00	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.012) ND (0.021) ND (0.013) N	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0042) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.0057) ND (0.011) N	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.007 ND (0.
EXylene (cyline) (cyl	Ug/I		-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.094) ND (0.0045) ND (0.0047) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.059) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0049) ND (0.0049) ND (0.0049) ND (0.0050) ND (0.0050) ND (0.0051) ND (0.011) ND (0.011) ND (0.011) ND (0.011) ND (0.011) ND (0.057) N	ND (0.59) ND (0.096) ND (0.0046) ND (0.0045) ND (0.0045) ND (0.0057) ND (0.0057) ND (0.0057) ND (0.0057) ND (0.0057) ND (0.0057) ND (0.021) N	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0	ND (0.59) ND (0.050) ND (0.0050) ND (0.0049) ND (0.0	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.005 ND (0.007 ND (0.
EXylene (cylene (cylene) (cyl	Ug/l	0.03 2 40 2 70 60 60 77 7 7 0.3 77 7 10.3	-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075) ND (0.0	ND (0.59) ND (0.0042) ND (0.0043) ND (0.0043) ND (0.0075) ND (0.0	ND (0.59) ND (0.059) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.013) N	ND (0.59) ND (0.042) ND (0.0046) ND (0.0045) ND (0.005) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.00776) ND (0.00776) ND (0.00776) ND (0.00776) ND (0.00776) ND (0.00776) ND (0.007776) ND (0.007776) ND (0.0077776) ND (0.00777776) ND (0.007777777777777777777777777777777777	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.012) ND (0.021) ND (0.013) N	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0042) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.0053) ND (0.0057) ND (0.011) N	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.007 ND (0.
EXylene (cyline) (cyl	Ug/l	70 60 2 40 2 2 3 40 2 2 3 40 40 40 40 40 40 50000 2 4 40 40 50000 2 4 40 40 40 40 40 40 40 40 40 40 40 40 4	-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0042) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.013) ND (0.011) N	ND (0.59) ND (0.004e) ND (0.004e) ND (0.0045) ND (0.0045) ND (0.005) ND (0.007e) ND (0.00	ND (0.59) ND (0.059) ND (0.0050) ND (0.0042) ND (0.0043) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.018) ND (0.017) N	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.0	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.0076 ND (0.
EXylene (cylune (cital) AS Volatile TIC (volatile TIC, Volatile SCILC Semi-volatiles (EPA 60 gamma-BHC (Indiane) more from the company of the company o	Ug/I	0.03 2 40 2 2 70 60 60 7 7 7 7 3 0.3 7 7 7 7 100 100 1300 300 5 5	-	ND (0.59) ND (0.042) ND (0.044) ND (0.0045) ND (0.0047) ND (0.0075) ND (0.075) ND (0.075) ND (0.075) ND (0.075) ND (0.075) ND (0.017) ND (0.01	ND (0.59) ND (0.094) ND (0.0045) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.059) ND (0.0050) ND (0.0042) ND (0.0043) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.019) ND (0.011) N	ND (0.59) ND (0.042) ND (0.0046) ND (0.0045) ND (0.005) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.0076) ND (0.00776) ND (0.00776) ND (0.00776) ND (0.00776) ND (0.00776) ND (0.007776) ND (0.00776) ND	ND (0.59) ND (0.059) ND (0.0059) ND (0.0059) ND (0.0049) ND (0.0083) ND (0.00	ND (0.59) ND (0.059) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0087) ND (0.017)	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.007 ND (0.
EXylene (cylene (cylene) (cy	Ug/l	0.03 2 40 2 60 60 70 70 0.3 77 0.3 100 61 300 62 200 63 3000 64 4 70 1000 1300 300 65 2 2 1000 2 2000 2 2000 2 2000 2 20000 30000 10000 10000	-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075) ND (0.0	ND (0.59) ND (0.0042) ND (0.0043) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0042) ND (0.0049) ND (0.0083) ND (0.0	ND (0.59) ND (0.096) ND (0.0046) ND (0.0045) ND (0.0045) ND (0.0076) ND (0.00776) ND (0.007776) ND (0.0077776) ND (0.007776) ND (0.00776) ND (0.007776) ND (0.0077776) ND (0.007776) ND	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.0087) ND (0.021)	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.0	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.007 ND (0.
EXylene (cylene (cylene) (cyl	Ug/I		-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075) ND (0.0	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.059) ND (0.0050) ND (0.0042) ND (0.0043) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.01042) ND (0.021)	ND (0.59) ND (0.042) ND (0.045) ND (0.0045) ND (0.005) ND (0.076) ND (0.057)	ND (0.59) ND (0.059) ND (0.0050) ND (0.0042) ND (0.0043) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.018) ND (0.019) N	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0049) ND (0.0049) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0083) ND (0.0087) ND (0.007)	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.0076 ND (0.
EXylene (cylene (cylene) (cy	Ug/I	0.03 2 40 2 60 60 70 70 0.3 77 0.3 100 61 300 62 200 63 3000 64 4 70 1000 1300 300 65 2 2 1000 2 2000 2 2000 2 2000 2 20000 30000 10000 10000	-	ND (0.59) ND (0.0045) ND (0.0045) ND (0.0044) ND (0.0075) ND (0.0	ND (0.59) ND (0.0042) ND (0.0043) ND (0.0047) ND (0.0075) ND (0.0	ND (0.59) ND (0.0050) ND (0.0042) ND (0.0049) ND (0.0083) ND (0.0	ND (0.59) ND (0.096) ND (0.0046) ND (0.0045) ND (0.0045) ND (0.0076) ND (0.00776) ND (0.007776) ND (0.0077776) ND (0.007776) ND (0.00776) ND (0.007776) ND (0.0077776) ND (0.007776) ND	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.0087) ND (0.021)	ND (0.59) ND (0.0050) ND (0.0050) ND (0.0042) ND (0.0083) ND (0.0	ND (0.59 ND (0.004 ND (0.004 ND (0.004 ND (0.004 ND (0.005 ND (0.007 ND (0.

- Pootnotes:

 * Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

 * This compound in blank spike is outside in house QC limits bias high.

 * Associated CCV outside of control limits high, sample was ND.

 * Associated CCV outside of control limits high, sample was ND.

 * Reported from the 2nd spiant. The 50 of the ICV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.

 * Calculated as: (Nitrogen, Nitrale + Nitrile) (Nitrogen, Nitrale)

Table 3 North Landfarm October 2021 - Analytical Data Hess Corporation - Former Port Reading Complex 750 Cliff Road Port Reading, Middlesex County, New Jersey

Client Sample ID:		NJ Groundwater	NJ Interim Groundwater	LN-1 JD33583-3	LN-2 JD33583-4	LN-3 JD33583-5	LN-4 JD33583-6	LN-5 JD33583-7	LN-6 JD33583-8	LN-7 JD33583-9
Date Sampled:		Criteria	Criteria	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021
Matrix:				Ground Water						
MS Volatiles (SW846 8260D)										
Acetone	ug/l	6000	-	ND (3.1) a						
Benzene	ug/l	1	-	ND (0.43)						
Bromochloromethane	ug/l	-	-	ND (0.48)						
Bromodichloromethane	ug/l	1	-	ND (0.45)						
Bromoform	ug/l	4	-	ND (0.63)						
Bromomethane	ug/l	10	-	ND (1.6)						
2-Butanone (MEK) Carbon disulfide	ug/l ug/l	300 700	-	ND (6.9) ND (0.46)						
			-							
Carbon tetrachloride Chlorobenzene	ug/l ug/l	50	-	ND (0.55) ND (0.56)						
Chloroethane	ug/l	-	5	ND (0.73)						
Chloroform	ug/l	70	-	ND (0.50)						
Chloromethane Cyclohexane	ug/l ug/l	-	-	ND (0.76) ND (0.78)	ND (0.76) ND (0.78)	ND (0.76) ND (0.78)	ND (0.76) 1.2 J	ND (0.76) ND (0.78)	ND (0.76) ND (0.78)	ND (0.76) 1.3 J
							ND (0.53)		ND (0.78)	ND (0.53)
1,2-Dibromo-3-chloropropane	ug/l	0.02		ND (0.53)	ND (0.53)	ND (0.53)	· · · · ·	ND (0.53)	` '	` '
Dibromochloromethane	ug/l	1	-	ND (0.56)						
1,2-Dibromoethane	ug/l	0.03	-	ND (0.48)						
1,2-Dichlorobenzene	ug/l	600	-	ND (0.53)						
1,3-Dichlorobenzene	ug/l	600	-	ND (0.54)						
1,4-Dichlorobenzene	ug/l	75	-	ND (0.51)						
Dichlorodifluoromethane	ug/l	1000	-	ND (0.56) b	ND (0.56) ^b	ND (0.56) b				
1,1-Dichloroethane	ug/l	50	-	ND (0.57)						
1,2-Dichloroethane	ug/l	2	-	ND (0.60)						
1,1-Dichloroethene	ug/l	1	-	ND (0.59)						
cis-1,2-Dichloroethene	ug/l	70	_	ND (0.51)						
trans-1.2-Dichloroethene	ug/l	100	_	ND (0.54)						
1,2-Dichloropropane	ug/l	1		ND (0.51)						
cis-1,3-Dichloropropene	ug/l	-	-	ND (0.47)						
trans-1,3-Dichloropropene Ethylbenzene	ug/l ug/l	700	-	ND (0.43) ND (0.60)						
Freon 113	ug/l	20000	-	ND (0.58)						
2-Hexanone	ug/l	40	-	ND (2.0)						
Isopropylbenzene	ug/l	700	-	ND (0.65)						
Methyl Acetate	ug/l	7000	-	ND (0.80) b	ND (0.80) ^b	ND (0.80) b				
Methylcyclohexane	ug/l	-	-	ND (0.60)	ND (0.60)	ND (0.60)	2.0 J	ND (0.60)	ND (0.60)	ND (0.60)
Methyl Tert Butyl Ether	ug/l	70	-	0.52 J	ND (0.51)	ND (0.51)	0.73 J	ND (0.51)	ND (0.51)	ND (0.51)
4-Methyl-2-pentanone(MIBK)	ug/l	-	-	ND (1.9) b						
Methylene chloride	ug/l	3	-	ND (1.0)						
Styrene	ug/l	100	-	ND (0.49)						
Tert Butyl Alcohol	ug/l	100	-	ND (5.8)	ND (5.8)	14.7	8.4 J	ND (5.8)	ND (5.8)	ND (5.8)
1,1,2,2-Tetrachloroethane	ug/l	1	-	ND (0.65)						
Tetrachloroethene	ug/l	1	-	ND (0.90)						
Toluene	ug/l	600	-	ND (0.53)						
1,2,3-Trichlorobenzene	ug/l	-	-	ND (0.50)						
1,2,4-Trichlorobenzene	ug/l	9	-	ND (0.50)						
1,1,1-Trichloroethane	ug/l	30	_	ND (0.54)						
1,1,2-Trichloroethane	ug/l	3	-	ND (0.53)						
Trichloroethene	ug/l	1	-	ND (0.53)						
Trichlorofluoromethane	ug/l	2000	-	ND (0.40)						
Vinyl chloride	ug/l	1	-	ND (0.79)						
m,p-Xylene	ug/l	-	-	ND (0.78)						
o-Xylene Xylene (total)	ug/l ug/l	1000	-	ND (0.59) ND (0.59)						
					,			,		,, ,,
MS Volatile TIC	1					ı	ı			
Total TIC, Volatile	ug/l	-	-	0	0	5.3 J	154.5 J	0	0	5.9 J
GC/LC Semi-volatiles (EPA 608.	3)									
gamma-BHC (Lindane)	ug/l	0.03	-	ND (0.0048)	ND (0.0047)	ND (0.0048)	ND (0.0047)	ND (0.0047)	ND (0.0048)	ND (0.0048)
	·				<u> </u>	<u> </u>	<u> </u>	·		

Table 3 North Landfarm October 2021 - Analytical Data Hess Corporation - Former Port Reading Complex 750 Cliff Road

Port Reading, Middlesex County, New Jersey

Client Sample ID:				LN-1	LN-2	LN-3	LN-4	LN-5	LN-6	LN-7
Lab Sample ID:		NJ	NJ Interim	JD33583-3	JD33583-4	JD33583-5	JD33583-6	JD33583-7	JD33583-8	JD33583-9
Date Sampled:		Groundwater Criteria	Groundwater Criteria	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021	10/14/2021
Matrix:				Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
				ND (0.0048)		0.0084 J °	ND (0.0047)			
Endrin Methoxychlor	ug/l ug/l	2 40		ND (0.0048) ND (0.0061)	ND (0.0047) ND (0.0060)	ND (0.0061)	ND (0.0047) ND (0.0060)	ND (0.0047) ND (0.0060)	ND (0.0048) ND (0.0061)	ND (0.0048) ND (0.0061)
Toxaphene	ug/l	2		ND (0.080)	ND (0.079)	ND (0.080)	ND (0.000)	ND (0.0000)	ND (0.080)	ND (0.080)
Toxapriorio	ug.			115 (0.555)	115 (0.070)	145 (0.000)	145 (0.010)	145 (0.070)	145 (0.000)	115 (0.000)
GC/LC Semi-volatiles (SW846	8151A)									
2,4-D	ug/l	70		ND (0.062)	ND (0.066)	ND (0.066)	ND (0.069)	ND (0.062)	ND (0.066)	ND (0.071)
2,4,5-TP (Silvex)	ug/l	60		ND (0.039)	ND (0.042)	ND (0.042)	ND (0.043)	ND (0.039)	ND (0.042)	ND (0.045)
2,4,5-T	ug/l	-		ND (0.012)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.012)	ND (0.013)	ND (0.014)
Dalapon	ug/l	200		ND (0.020)	ND (0.021)	ND (0.021)	ND (0.022)	ND (0.020)	ND (0.021)	ND (0.023)
Dicamba	ug/l	-		ND (0.019)	ND (0.021)	ND (0.021)	ND (0.021)	ND (0.019)	ND (0.021)	ND (0.022)
Dichloroprop	ug/l	-		ND (0.053) d	ND (0.057) ^d	ND (0.057) ^d	ND (0.059) d	ND (0.053) d	ND (0.057) ^d	ND (0.061) ^d
Dinoseb	ug/l	7		ND (0.11)	ND (0.11)	ND (0.11)	ND (0.12)	ND (0.11)	ND (0.11)	ND (0.12)
MCPA	ug/l	-		254 EB e	811 EB °	491 EB °	1770 EB °	822 EB °	772 EB °	685 EB °
MCPP	ug/l	7	-	ND (20) ^d	ND (22) d	ND (22) d	ND (22) d	ND (20) d	ND (22) d	ND (23) d
Pentachlorophenol	ug/l	0.3	-	0.018 J	0.014 J	0.013 J	0.014 J	0.015 J	0.013 J	ND (0.010)
2,4-DB	ug/l	-	-	ND (0.091)	ND (0.097)	ND (0.097)	ND (0.10)	ND (0.091)	ND (0.097)	ND (0.10)
Metals Analysis	•					•				
Aluminum	ug/l	200		1150	<200	<200	<200	1550	<200	<200
Antimony	ug/l	6	-	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0
Arsenic	ug/l	3		3	3.5	8.5	13.2	<3.0	7.7	5.2
Barium	ug/l	6000	-	<200	<200	<200	<200	<200	<200	<200
Beryllium	ug/l	1		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cadmium	ug/l	4	-	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Calcium	ug/l			33700	22400	45300	34000	6570	30700	39100
Chromium	ug/l	70	-	<10	<10	<10	<10	<10	<10	<10
Cobalt	ug/l	100	-	<50	<50	<50	<50	<50	<50	<50
Copper	ug/l	1300	-	<10	<10	<10	<10	<10	<10	<10
Iron	ug/l	300	-	47400	17000	40200	20200	3300	24100	27400
Lead	ug/l	5	-	5.9	<3.0	<3.0	<3.0	7.3	<3.0	<3.0
Magnesium	ug/l	-	-	12800	8110	14500	24200	6000	12300	14600
Manganese	ug/l	50	-	772	254	692	468	34.2	527	774
Mercury	ug/l	2	-	0.28	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Nickel	ug/l	100		<10	<10	<10	<10	<10	<10	<10
Potassium	ug/l	-	-	18500	11300	15200	13800	<10000	13900	14600
Selenium	ug/l	40	-	<10	<10	<10	<10	<10	<10	<10
Silver	ug/l	40	-	<10	<10	<10	<10	<10	<10	<10
Sodium	ug/l	50000		183000	92500	206000	274000	27500	141000	111000
Thallium	ug/l	2		<10	<10	<10	<10	<10	<10	<10
Vanadium	ug/l	2000		<50 <20	<50	<50	<50 <20	<50	<50 <20	<50 <30
Zinc	ug/l	2000		\$20	<20	<20	\$20	47.8	\$20	<20
General Chemistry										
Chloride	mg/l	250		385	132	291	458	17.6	187	156
Fluoride	mg/l	2		1.3	1.2	0.88	1	<0.20	1.4	0.89
Nitrogen, Ammonia	mg/l	3		6.1	2.2	5.9	2.4	<0.20	4.7	2.5
Nitrogen, Nitrate	mg/l	10		<0.11 ^f	<0.11 ^f	<0.11 ^f	<0.11 ^f	0.84 ^f	<0.11 ^f	<0.11 ^f
Nitrogen, Nitrate + Nitrite	mg/l	10		<0.10	<0.10	<0.10	<0.10	0.84	<0.10	<0.10
Nitrogen, Nitrite	mg/l	1	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Phenols	mg/l	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Solids, Total Dissolved	mg/l	500		140	30	230	560	107	70	<10
Specific Conductivity	umhos/cm	-	-	1420	683	1390	1790	271	945	726
Sulfate	mg/l	250	-	7.7	3.8	<2.0	<2.0	66.5	24	9.8
Total Organic Carbon	mg/l	_	-	10.3	4.3	25.5	5.6	5.6	5.7	6.1
Total Organic Carbon Total Organic Halides	+									
rotal Organic malides	mg/l	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Footnotes:

- a Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND. This compound
- in blank spike is outside in house QC limits bias high.
- b Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- c More than 40 % RPD for detected concentrations between the two GC columns.
- d Reported from 2nd signal. %RSD of initial calibration on 1st signal exceed method criteria (20 %) so using for confirmation only.
- e Reported from 2nd signal. %RSD of initial calibration on 1st signal exceed method criteria (20%) so using for confirmation only.
- f Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite)

Table 4 South Landfarm July 2021 - Analytical Data Hess Corporation - Former Port Reading Complex 750 Cliff Road Port Reading, Middlesex County, New Jersey

Market:	Client Sample ID:				LS-1R	LS-2	LS-3	LS-4
Matrix Criteria Ground Water	Lab Sample ID:		NJ Groundwater		JD28307-3	JD28307-4	JD28307-5	JD28307-6
Mectanics SWANE 22400			Criteria					
Sections	Matrix:				Ground Water	Ground Water	Ground Water	Ground Wate
Serverent Serv	MS Volatiles (SW846 8260D)							
Servane 1		1						
Stronochkromenhame				-				
Street	Bromochloromethane			-	(,			
Semontentane og	Bromodichloromethane		1	-				
2-Betannen (MEC)		ug/l	4	-			ND (0.63)	ND (0.63)
Carbon designifier og 91 700 - NO (0.46) ND (0				-				
Carbon tetresheroise ug 1				-				
Chinosehareane ogl S9								
Chloroform Sign 70	Chlorobenzene		50	-				
Chloromethane	Chloroethane		-	5				
Cyclohesane sign			70	-				
1.2.Disconos-betterpropense sign			-					
1.2.Obtronocehane ug1	1,2-Dibromo-3-chloropropane		0.02	-		ND (0.53)		
1.2 Dichrobenzene ugh 600 NO (0.54) NO (0.53) NO (0.53) NO (0.53) NO (0.54) NO (0.55) NO (0.55	Dibromochloromethane			-				
1.3.Dichlorobenzene ug1	1,2-Dibromoethane			-				
1.4.Dichlorobenzene ug1								
Dichlorodifluoromethane	1,4-Dichlorobenzene							
12.Dichloroethene	Dichlorodifluoromethane		1000	-	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)
1.1.Dichtorochenee	1,1-Dichloroethane	ug/l	50	-	ND (0.57)	ND (0.57)	ND (0.57)	ND (0.57)
128-12-Dehloroethene 1981 70	1,2-Dichloroethane			-				
Page								
1,2-Dichforopropene								
18-13-10-bithorgropene Ugil	1,2-Dichloropropane							
Ethybenzene	cis-1,3-Dichloropropene	ug/l	-	-				
Present 13				-				
2-Hexanone				-				
Methylockeate gg 7000 - ND (0.80) ND (0.81) ND (0.51) ND (0.52) ND (0.52) ND (0.55)				-		1		
Methyl Ether ggl				-	ND (0.80)	ND (0.80)	ND (0.80)	
Methyle-2-pentanone(MIBK) ug/l	Methylcyclohexane		-	-				
Methylene chloride			70	-				
Styrene			- 2	-				
Terl Buly Alcohol Ug/l 100 - ND (6.8) ND (6.8) 1330 61.9				-				
Tetrachloroethene Ug/l 1	Tert Butyl Alcohol			-				
Toluene	1,1,2,2-Tetrachloroethane	ug/l		-			ND (0.65)	
12,3-Trichlorobenzene	Tetrachloroethene			-				
12,4-Trichlorobenzene			600	-				
1,1,1-Trichloroethane			9					
1.1.2-Trichloroethane				-				
	1,1,2-Trichloroethane		3	-	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
\text{ViryI chioride} ug/l	Trichloroethene			-				
Imp-Xylene				-				
			1					
MS Volatile TIC			-	-				
Total TIC, Volatile Ug/l - 0 5 J 174.8 J 85.7 J	Xylene (total)		1000	-				
Metals Analysis Arsenic Ug/l 3 - 10.5 43.9 11.7 24	MS Volatile TIC							
Metals Analysis Metals Ana	Total TIC. Volatile	ua/l		-	1 0	5 J	174.8 J	85.7 J
Arsenic ug/l 3 - 10.5 43.9 111.7 24 Barium ug/l 6000 - <200 634 601 <200 Cadmium ug/l 4 - <3.0 <3.0 <3.0 <3.0 Cadmium ug/l 70 - <10 <10 <10 <10 Chromium ug/l 300 - 7840 3630 11900 Cead ug/l 50 - <3.1 <3.0 <3.0 <3.0 Cead ug/l 50 - <3.1 <3.0 <3.0 <3.0 Cead ug/l 50 - <3.0 <3.0 <3.0 <3.0 Cead ug/l 50 - <3.1 <3.0 <3.0 <3.0 Cead ug/l 50 - 581 301 1960 246 Cead ug/l 2 - <0.20 <0.20 <0.20 <0.20 Celenium ug/l 40 - <10 <11 <11 Celenium ug/l 40 - <10 <10 <11 Celenium ug/l 50000 - 58900 102000 1440000 368000 General Chemistry Chloride ug/l 2000 - 34100 19800 308000 555000 Celenium ug/l 3000 - 750 <200 330 530 Celenium ug/l 3000 - 34100 19800 308000 555000 Celenium ug/l 10000 - <110 <10 <110 <110 Celenium ug/l 10000 - <110 <10 <110 <110 Celenium ug/l 3000 - 34100 198000 308000 555000 Celenium ug/l 3000 - 34100 198000 308000 555000 Celenium ug/l 3000 - 410 <100 <110 <110 Celenium ug/l 10000 - <110 <110 <110 <110 Celenium Ug/l 10000 - <100 <100 <100 <100 Celenium Ug/l 10000 - <100 <100 <100 Celenium Ug/l 10000 - <100 <100 <100 Celenium Ug/l 500000 - <100 <100 Celenium Ug/l 500000 - <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000	Metals Analysis							
Barium Ug/l 6000 - <200 634 601 <200 Cadmium Ug/l 4 - <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0								
Definition				-				
Chromium Ug/l 70 - <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <								
Lead				-				
Mercury Ug/l 2	Lead	ug/l	5	-	<3.0	<3.0	<3.0	<3.0
Selenium Ug/l 40 - <10 <10 11.8 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10								
Silver	Mercury							
Sodium Ug/I 50000 - 58900 102000 1440000 368000								
Chloride	Sodium							
Fluoride	General Chemistry							
Fluoride		ug/l	250000	-		198000	3080000	555000
Nitrogen, Nitrate Ug/I 10000 - <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 ° <110 °		ug/l						
Nitrogen, Nitrate + Nitrite Ug/l 10000 - <100 <100 <100 <100 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
Nitrogen, Nitrite Ug/I 1000 - <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10				-				
Phenols ug/l - <200 <200 <200 1400 Solids, Total Dissolved ug/l 500000 - 127000 555000 5810000 1080000 Specific Conductivity umhos/cm - - 428 1070 9950 2390 Sulfate ug/l 250000 - <2000				-				
Solids, Total Dissolved Ug/l 500000 - 127000 555000 5810000 1080000				-				
Specific Conductivity umhos/cm - 428 1070 9950 2390 Sulfate ug/l 250000 - <2000								
Sulfate ug/l 250000 - <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <2000 <				-				
Total Organic Carbon ug/l - - 11100 13500 62500 48800 Total Organic Halides ug/l - - <50	Sulfate	ug/l		-	<2000	<2000	<2000	<2000
	Total Organic Carbon		-	-				
pH su 6.5-8.5 - 6.64 7.31 6.64 7.27	Total Organic Halides pH		6.5-8.5	-				60 7.27

Footnotes:

^a Associated CCV outside of control limits low.

^b Associated CCV outside of control limits high, sample was ND.

^c Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

South Landfarm October 2021 - Analytical Data Hess Corporation - Former Port Reading Complex 750 Cliff Road

Port Reading, Middlesex County, New Jersey

Client Sample ID: Lab Sample ID: Date Sampled:		NJ Groundwater	NJ Interim Groundwater	LS-1R JD33587-3 10/15/2021	LS-2 JD33587-4 10/15/2021	LS-3 JD33587-5 10/15/2021	LS-4 JD33587-6 10/15/2021
Matrix:		Criteria	Criteria	Ground Water	Ground Water	Ground Water	Ground Wate
MS Volatiles (SW846 8260D)	_					ı	l
Acetone		6000		ND (3.1) a	ND (3.1) ^a	9.9 J ^a	12.7 a
Benzene	ug/l ug/l	1	-	ND (3.1) ND (0.43)	ND (3.1) ND (0.43)	1.1	5.1
Bromochloromethane Bromodichloromethane	ug/l	- 1	-	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)
Bromoform	ug/l ug/l	4	-	ND (0.43)	ND (0.63)	ND (0.43)	ND (0.43)
Promomethane P-Butanone (MEK)	ug/l ug/l	10 300	-	ND (1.6) ND (6.9)	ND (1.6) ND (6.9)	ND (1.6) ND (6.9)	ND (1.6) ND (6.9)
Carbon disulfide	ug/I	700	-	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.9)
Carbon tetrachloride	ug/l	1 50	-	ND (0.55)	ND (0.55)	ND (0.55)	ND (0.55)
Chlorobenzene Chloroethane	ug/l ug/l	-	5	ND (0.56) ND (0.73)	ND (0.56) ND (0.73)	ND (0.56) ND (0.73)	ND (0.56) ND (0.73)
Chloroform	ug/l	70	-	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Chloromethane Cyclohexane	ug/l ug/l	-		ND (0.76) ND (0.78)	ND (0.76) 1.3 J	ND (0.76) 2.3 J	ND (0.76) 1.2 J
,2-Dibromo-3-chloropropane	ug/l	0.02	-	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
Dibromochloromethane 1,2-Dibromoethane	ug/l ug/l	0.03		ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)
,2-Dichlorobenzene	ug/l	600	-	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
,3-Dichlorobenzene ,4-Dichlorobenzene	ug/l ug/l	600 75	-	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)
Dichlorodifluoromethane	ug/l	1000	-	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)
,1-Dichloroethane	ug/l ug/l	50 2	-	ND (0.57) ND (0.60)	ND (0.57) ND (0.60)	ND (0.57) ND (0.60)	ND (0.57) ND (0.60)
,1-Dichloroethene	ug/l	1	-	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)
sis-1,2-Dichloroethene rans-1,2-Dichloroethene	ug/l ug/l	70 100	-	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)
,2-Dichloropropane	ug/l	100	-	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.51)	ND (0.51)
is-1,3-Dichloropropene	ug/l	-	-	ND (0.47)	ND (0.47) ND (0.43)	ND (0.47) ND (0.43)	ND (0.47)
rans-1,3-Dichloropropene Ethylbenzene	ug/l ug/l	700	-	ND (0.43) ND (0.60)	ND (0.60)	ND (0.60)	ND (0.43) ND (0.60)
reon 113	ug/l	20000	-	ND (0.58)	ND (0.58)	ND (0.58)	ND (0.58)
2-Hexanone	ug/l	40	-	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
sopropylbenzene Methyl Acetate	ug/l ug/l	700 7000	-	ND (0.65) ND (0.80) ^b	ND (0.65) ND (0.80) ^b	1.8 ND (0.80) ^b	1.3 ND (0.80) ^b
Methylcyclohexane	ug/l	-	-	ND (0.60)	ND (0.60)	1.1 J	ND (0.60)
Methyl Tert Butyl Ether I-Methyl-2-pentanone(MIBK)	ug/l ug/l	70	-	0.87 J ND (1.9) ^b	ND (0.51) ND (1.9) ^b	ND (0.51) ND (1.9) ^b	ND (0.51) ND (1.9) b
Methylene chloride	ug/l	3	-	ND (1.0)	ND (1.9)	ND (1.9)	ND (1.9)
Styrene	ug/l	100	-	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)
Fert Butyl Alcohol 1,1,2,2-Tetrachloroethane	ug/l ug/l	100		ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	1420 ND (0.65)	94.2 ND (0.65)
Tetrachloroethene	ug/l	1	-	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)
Coluene 1,2,3-Trichlorobenzene	ug/l ug/l	600	-	ND (0.53) ND (0.50)	ND (0.53) ND (0.50)	ND (0.53) ND (0.50)	ND (0.53) ND (0.50)
,2,4-Trichlorobenzene	ug/l	9	-	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,1,1-Trichloroethane	ug/l ug/l	30	-	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)
richloroethene	ug/l	1	-	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
richlorofluoromethane /inyl chloride	ug/l ug/l	2000		ND (0.40) ND (0.79)	ND (0.40) ND (0.79)	ND (0.40) ND (0.79)	ND (0.40) ND (0.79)
n,p-Xylene	ug/l	-	-	ND (0.78)	ND (0.78)	ND (0.78)	2.2
-Xylene (ylene (total)	ug/l ug/l	1000	-	ND (0.59) ND (0.59)	ND (0.59) ND (0.59)	ND (0.59) ND (0.59)	ND (0.59) 2.2
				(0.00)	(0.00)	(0.00)	
MS Volatile TIC							
Total TIC, Volatile	ug/l	-	-	0	0	188.3 J	104.2 J
Metals Analysis							
Aluminum Antimony	ug/l ug/l	200 6		<200 <6.0	<200 <6.0	<200 6	<200 <6.0
Arsenic	ug/l	3	-	8.1	26.4	4.3	22
Barium Beryllium	ug/l ug/l	6000		<200 <1.0	632 <1.0	456 <1.0	<200 <1.0
Cadmium	ug/l	4	-	<3.0	<3.0	3.1	<3.0
Calcium Chromium	ug/l	70	-	22600 <10	72100 <10	215000 <10	44800 <10
Cobalt	ug/l ug/l	100		<50	<50	<50	<50
Copper	ug/l	1300 300		<10 9180	<10 1890	<10 45200	<10 9950
.ead	ug/l ug/l	5	-	<3.0	<3.0	<3.0	<3.0
Magnesium	ug/l	-	-	9050	25500	145000	27800
Manganese Mercury	ug/l ug/l	50 2	-	1290 <0.20	180 <0.20	1320 <0.20	261 <0.20
Nickel	ug/l	100	-	<10	<10	<10	<10
Potassium Selenium	ug/l ug/l	40	-	<10000 <10	<10000 <10	25500 <10	21700 <10
Silver	ug/l	40	-	<10	<10	12.4	<10
Sodium Fhallium	ug/l ug/l	50000 2	-	70800 <10	107000 <10	1320000 <10	423000 <10
/anadium	ug/l	-	-	<50	<50	<50	<50
Zinc	ug/l	2000	-	28.4	<20	<20	<20
General Chemistry							
Chloride	mg/l	250		52.4	211	3270	764
luoride	mg/l	2	-	0.84	<0.20	0.35	0.62
Nitrogen, Ammonia	mg/l	3 10		0.92 <0.11°	1.5 <0.11 °	10 <0.11 °	34.8 <0.11 °
	mg/l mg/l	10	-	<0.11° <0.10	<0.11° <0.10	<0.11° <0.10	<0.11° <0.10
Nitrogen, Nitrate Nitrogen, Nitrate + Nitrite	mg/l	1	-	<0.010	<0.010	<0.010	<0.010
Nitrogen, Nitrate + Nitrite Nitrogen, Nitrite		-	-	<0.20 240	0.71 497	<0.20 4740	<0.20 1100
Nitrogen, Nitrate + Nitrite Nitrogen, Nitrite Phenols	mg/l mg/l	500	-				
Nitrogen, Nitrate + Nitrite Vitrogen, Nitrite Phenols Solids, Total Dissolved Specific Conductivity	mg/l mg/l umhos/cm	-	-	494	1160	9180	2780
Nitrogen, Nitrate + Nitrite Nitrogen, Nitrite Phenols Solids, Total Dissolved Specific Conductivity Sulfate	mg/l umhos/cm mg/l	250		<2.0	<2.0	9180 2.1	<2.0
Nitrogen, Nitrate + Nitrite Vitrogen, Nitrite Phenols Solids, Total Dissolved Specific Conductivity	mg/l umhos/cm	-	-			9180	
litrogen, Nitrate + Nitrite litrogen, Nitrite Phenois Solids, Total Dissolved Specific Conductivity Sulfate Total Organic Carbon	mg/l umhos/cm mg/l mg/l	250		<2.0 11.4	<2.0 12.5	9180 2.1 71.6	<2.0 45

Table 6 No. 1 Landfarm July 2021 - Analytical Data Hess Corporation - Former Port Reading Complex 750 Cliff Road Port Reading, Middlesex County, New Jersey

Client Sample ID:		NJ Groundwater Criteria (NJAC	NJ Interim Groundwater	L1-1 JD28114-1	L1-2 JD28114-3	L1-3 JD28114-6	L1-4 JD28114-7	BG-2 JD28114-2	BG-3 JD28114-8
Date Sampled: Matrix:		7:9C 9/4/18) ¹	7:9C 1/17/19) ²	7/13/2021 Ground Water	7/13/2021 Ground Water	7/13/2021 Ground Water	7/13/2021 Ground Water	7/13/2021 Ground Water	7/13/2021 Ground Water
watrix.			,	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
MS Volatiles (SW846 8260D)									
Acetone Benzene	ug/l ug/l	6000	-	4.3 J ^a ND (0.43)	ND (3.1) b ND (0.43)	ND (3.1) b ND (0.43)	ND (3.1) b ND (0.43)	5.9 J ^a ND (0.43)	ND (3.1) b ND (0.43)
Bromochloromethane Bromodichloromethane	ug/l ug/l	- 1	-	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)	ND (0.48) ND (0.45)
Bromoform Bromomethane	ug/l ug/l	4	-	ND (0.63) ND (1.6)	ND (0.63) ND (1.6)	ND (0.63) ND (1.6)	ND (0.63) ND (1.6)	ND (0.63) ND (1.6)	ND (0.63) ND (1.6)
2-Butanone (MEK)	ug/l	300	-	ND (6.9) b	ND (6.9) b	ND (6.9) b	ND (6.9) b	ND (6.9) b	ND (6.9) b
Carbon disulfide Carbon tetrachloride	ug/l ug/l	700 1	-	ND (0.46) ND (0.55)	ND (0.46) ND (0.55)	ND (0.46) ND (0.55)	ND (0.46) ND (0.55)	ND (0.46) ND (0.55)	ND (0.46) ND (0.55)
Chlorobenzene Chloroethane	ug/l ug/l	50	5	ND (0.56) ND (0.73)	18.8 ND (0.73)	ND (0.56) ND (0.73)	ND (0.56) ND (0.73)	ND (0.56) ND (0.73)	ND (0.56) ND (0.73)
Chloroform Chloromethane	ug/l ug/l	70	-	ND (0.50) ND (0.76)	ND (0.50) ND (0.76)	ND (0.50) ND (0.76)	ND (0.50) ND (0.76)	ND (0.50) ND (0.76)	ND (0.50) ND (0.76)
Cyclohexane 1,2-Dibromo-3-chloropropane	ug/l ug/l	0.02	-	ND (0.78) ND (0.53) °	ND (0.78) ND (0.53) °	ND (0.78) ND (0.53) °	ND (0.78) ND (0.53) °	ND (0.78) ND (0.53) °	ND (0.78) ND (0.53) °
Dibromochloromethane 1,2-Dibromoethane	ug/l ug/l	1 0.03	-	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)
1,3-Dichlorobenzene	ug/ī	600 600	-	ND (0.53) ND (0.54)	ND (0.53) 0.65 J	ND (0.53) ND (0.54)	ND (0.53) ND (0.54)	ND (0.53) ND (0.54)	ND (0.53) ND (0.54)
1,4-Dichlorobenzene Dichlorodifluoromethane	ug/l ug/l	75 1000	-	ND (0.54) ND (0.51) ND (0.56)	1.5 ND (0.56)	ND (0.51) ND (0.56)	ND (0.54) ND (0.51) ND (0.56)	ND (0.51) ND (0.56)	ND (0.54) ND (0.51) ND (0.56)
1,1-Dichloroethane	ug/l ug/l	50	-	ND (0.57)	ND (0.57)	ND (0.57)	ND (0.57)	ND (0.57)	ND (0.57)
1,2-Dichloroethane 1,1-Dichloroethene	ug/l ug/l	2	-	ND (0.60) ND (0.59)	ND (0.60) ND (0.59)	ND (0.60) ND (0.59)	ND (0.60) ND (0.59)	ND (0.60) ND (0.59)	ND (0.60) ND (0.59)
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ug/l ug/l	70 100	-	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)	ND (0.51) ND (0.54)
1,2-Dichloropropane cis-1,3-Dichloropropene	ug/l ug/l	1 -	-	ND (0.51) ND (0.47)	ND (0.51) ND (0.47)	ND (0.51) ND (0.47)	ND (0.51) ND (0.47)	ND (0.51) ND (0.47)	ND (0.51) ND (0.47)
trans-1,3-Dichloropropene Ethylbenzene	ug/l ug/l	700	-	ND (0.43) ND (0.60)	ND (0.43) ND (0.60)	ND (0.43) ND (0.60)	ND (0.43) ND (0.60)	ND (0.43) ND (0.60)	ND (0.43) ND (0.60)
Freon 113 2-Hexanone	ug/l ug/l	20000 40	-	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)
Isopropylbenzene Methyl Acetate	ug/l ug/l	700 7000	-	ND (0.65) ND (0.80)	ND (0.65) ND (0.80)	ND (0.65) ND (0.80)	ND (0.65) ND (0.80)	ND (0.65) ND (0.80)	ND (0.65) ND (0.80)
Methylcyclohexane Methyl Tert Butyl Ether	ug/l ug/l	- 70	-	ND (0.60) ND (0.51)	ND (0.60) ND (0.51)	ND (0.60) ND (0.51)	ND (0.60) ND (0.51)	ND (0.60) ND (0.51)	ND (0.60) ND (0.51)
4-Methyl-2-pentanone(MIBK) Methylene chloride	ug/l	- 3	-	ND (0.51) ND (1.9) ND (1.0)	ND (0.51) ND (1.9) ND (1.0)	ND (0.51) ND (1.9) ND (1.0)	ND (0.51) ND (1.9) ND (1.0)	ND (1.9) ND (1.0)	ND (1.9) ND (1.0)
Styrene	ug/l	100	-	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)
Tert Butyl Alcohol 1,1,2,2-Tetrachloroethane	ug/l ug/l	100	-	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)	ND (5.8) ND (0.65)
Tetrachloroethene Toluene	ug/l ug/l	1 600	-	ND (0.90) ND (0.53)	ND (0.90) ND (0.53)	ND (0.90) ND (0.53)	ND (0.90) ND (0.53)	ND (0.90) ND (0.53)	ND (0.90) ND (0.53)
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/l ug/l	- 9	- :	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ug/l ug/l	30 3	-	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)	ND (0.54) ND (0.53)
Trichloroethene	ug/l	1 2000	-	ND (0.53) ND (0.40)	ND (0.53) ND (0.40)	ND (0.53) ND (0.40)	ND (0.53) ND (0.40)	ND (0.53) ND (0.40)	ND (0.53) ND (0.40)
ı rıcnlorotluoromethane	lua/l				ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
Vinyl chloride	ug/l ug/l	1	-	ND (0.79) ND (0.78)					
/inyl chloride n,p-Xylene >-Xylene (ylene (total) WS Volatile TIC			-	ND (0.79) ND (0.78) ND (0.59) ND (0.59)	ND (0.79) ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)
Vinyl chloride m,p-Xylene o-Xylene Xylene (total) MS Volatile TIC Total TIC, Volatile	ug/l ug/l ug/l ug/l	1 -	-	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)
Xylene (total) MS Volatile TIC Total TIC, Volatile MS Semi-volatiles (SW846 8270E 2-Chlorophenol	ug/l	1 -	-	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.78)	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)	ND (0.78) ND (0.59) ND (0.59)
Viny chloride "p. Xylene 3-Xylene 5-Xylene (tota) MS Volatile TIC Total TIC, Volatile MS Semi-volatiles (SW846 82708 2-Chlorophend 1-Chloro-3-methyl phenol 2-Hobichorphenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1 - - 1000	- 100	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.80) ND (0.87) ND (0.87)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) 6.9 J ND (0.82) ND (0.82) ND (1.3)	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.78) ND (0.78) ND (0.78) ND (1.2)	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.80) ND (0.87) ND (1.2)	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.80) ND (0.87) ND (1.2)	ND (0.78) ND (0.59) ND (0.59) ND (0.59)
Vinyl chloride m, p. Xylene O-Xylene Xylene (total) MS Volatile TiC Total TiC, Volatile MS Semi-volatiles (SW846 82708 2-Chlorophend 4-Chloro-3-methyl phenol 2,4-Dichtorophenol 2,4-Dichtorophenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1 - - 1000	100	ND (0.78) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (1.5)	ND (0.78) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (1.6)	ND (0.78) ND (0.59) ND (0.59) ND (0.78) ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5)	ND (0.78) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (1.5)	ND (0.78) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (1.5)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) O ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5)
Vinyl chloride m, & Yylene O-Xylene Xylene Xylene (total) MS Volatile TIC Total TIC, Volatile MS Semi-volatiles (SW846 82706 2-Chlorophenol 2-4-Dindthylphenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1 - 1000	- 100	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.80) ND (0.87) ND (1.2) ND (2.4)	ND (0.78) ND (0.59) ND (0.59) 6.9 J ND (0.82) ND (0.82) ND (0.89) ND (1.3) ND (2.4)	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.78) ND (0.85) ND (0.85) ND (1.2) ND (2.3)	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.80) ND (0.87) ND (1.2) ND (2.4)	ND (0.78) ND (0.59) ND (0.59) 0 ND (0.80) ND (0.87) ND (0.87) ND (1.2) ND (2.4)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.78) ND (0.85) ND (1.2) ND (2.3)
Vinyl chloride "p. Zylene "Xylene "Xylene "Xylene "Xylene (total) MS Volatile TIC Total TIC, Volatile MS Semi-volatiles (SW846 8270E 2-Chlorophend 4-Chloro-3-methyl phenol 4-Dindryphenol 2-Dindryphenol 2-Dindryphenol 3-M-Methylphenol 3-M-Methylphenol 3-M-Methylphenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (1.5) ND (0.86) ND (0.85) ND (0.85)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.89)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.84) ND (0.84) ND (0.91)°	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (1.5) ND (0.86) ND (0.85) ND (0.85)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (0.87) ND (0.4) ND (0.87)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.78) ND (0.85) ND (1.2) ND (0.84) ND (0.84) ND (0.84) ND (0.84) ND (0.84)
Vinyl chloride m, p-Xylene X-Xylene X-Xylene X-Xylene (total) MS Volatile TIC Total TIC, Volatile MS Semi-volatiles (SW846 82708 2-Chlorophend 4-Chloro-3-methyl phenol 2-4-Dichterophenol 2-4-Dichterophenol 3-4-Monthylphenol 3-4-Monthylphenol 3-4-Monthylphenol 3-4-Monthylphenol 4-Allorophenol 4-Allorophenol 4-Allorophenol 4-Allorophenol 4-Allorophenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1	- - - 100 100 - - - - -	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.2) ND (0.81) ND (0.85) ND (0.85) ND (0.85) ND (0.1.1) ND (1.1)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (1.6) ND (0.89) ND (0.89) ND (0.89) ND (0.90) ND (1.2) ND (1.2) ND (1.2) ND (1.2) ND (1.2) ND (1.2)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.85) ND (1.2) ND (1.2) ND (1.5) ND (0.85) ND (0.84) ND (0.84) ND (0.91) ^c ND (0.11) ^c ND (0.17) ^c ND (0.37)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.2) ND (0.85) ND (0.85) ND (0.85) ND (0.93) ⁶ ND (1.1) ⁶ ND (0.11) ⁶ ND (0.38)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (1.2) ND (1.5) ND (0.87) ND (0.87) ND (0.88) ND (0.94) ND (0.11) ND (1.1) ND (1.1) ND (1.1) ND (1.1) ND (0.38)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (0.84) ND (0.91) ^c ND (1.1) ^c ND (0.11) ^c ND (0.37)
viny chloride m, p-Xylene x-Xylene x-Xylene x-Xylene x-Xylene x-Xylene X-Xylene (total) MS Volatile TIC TG Tal TIC, Volatile MS Semi-volatiles (SW846 8270E 2-Chlorophend 4-Chloro-3-methyl phend 2-4-Discharophend 2-4-Discharophend 2-4-Discharophend 3-4-Discharophend 3-4-Mittyphend 3-4-Mittyphend 4-Mittyphend 4-Mittyphend 4-Mittyphend 4-Mittyphend 4-Mittyphend 4-Mittyphend 2-3-4,6-Frichlorophend 2-3,4-6-Frichlorophend	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.5) ND (0.85) ND (0.85) ND (0.93)* ND (1.1)* ND (1.3) ND (1.4) ND (1.4) ND (1.5) ND (0.85) ND (0.93)*	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (1.6) ND (0.89) ND (0.89) ND (0.96) ND (0.29) ND (1.2) ND (0.39) ND (1.3) ND (1.3) ND (1.5)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.85) ND (1.2) ND (0.85) ND (1.2) ND (0.85) ND (0.85) ND (0.85) ND (0.81) ND (1.1) ND (1.1)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.5) ND (0.85) ND (0.85) ND (0.93)* ND (1.1)* ND (1.3) ND (1.4) ND (1.4) ND (1.4)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.87) ND (1.2) ND (1.2) ND (1.5) ND (0.87) ND (0.87) ND (0.87) ND (0.87) ND (0.11) ² ND (1.1) ³ ND (1.3)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (1.2) ND (1.2) ND (0.85) ND (1.5) ND (0.85) ND (0.85)
viny chloride m, p-Xylene x-Xylene x-Xy	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.4) ND (1.5) ND (0.86) ND (0.86) ND (0.38) ND (1.4) ND (1.3) ND (1.3) ND (1.3) ND (0.90)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (1.6) ND (0.89) ND (0.89) ND (0.39) ND (1.5)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.85) ND (1.2) ND (1.3) ND (0.81) ND (0.81) ND (0.37) ND (1.1) ND (1.3) ND (1.3) ND (1.3) ND (1.3) ND (1.3) ND (0.88) ND (0.89) ND (0.81) ND (0.81)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (1.5) ND (0.85) ND (0.86) ND (0.86) ND (0.11) ND (1.5) ND (0.38) ND (1.4) ND (1.3) ND (1.3) ND (0.59)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.4) ND (1.5) ND (0.87) ND (0.88) ND (0.94) ND (1.3) ND (1.3) ND (1.3) ND (1.3) ND (1.3) ND (0.91) ND (0.91)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.81) ND (0.81) ND (0.87) ND (0.
Vinyl chloride m, p-Yylene O-Xylene O-Xylene O-Xylene O-Xylene O-Xylene O-Xylene MS Volatile TIC Total TIC, Volatile MS Semi-volatiles (SW846 82708 2-Chlorophend 4-Chico-3-methyl phend 2-4-Dicharophend 2-4-Dicharophend 2-4-Dicharophend 2-4-Dicharophend 2-4-Dicharophend 2-4-Dicharophend 2-Methylphend 3-4-Methylphend 3-4-Methylphend 4-Nitrophend 1-3,4,6-Tichforophend 2-4,6-Tirichforophend 2-4,6-Tirichforophend 2-4,6-Tirichforophend 2-4,6-Tirichforophend A-Reaphthene Acenaphthylene	lug/l lug/lug/l lug/lug/l lug/	1	- - - 100 - - - - - - - - - - - - - - -	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (0.87) ND (0.88) ND (0.89) ND (0.89) ND (0.89) ND (1.3) ND (1.3) ND (0.90) ND (0.90) ND (0.90) ND (0.90) ND (0.13) ND (0.90) ND (0.13) ND (0.13) ND (0.13) ND (0.13) ND (0.13) ND (0.13)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.89) ND (1.3) ND (2.4) ND (1.6) ND (0.89) ND (0.89) ND (0.98) ND (0.98) ND (0.98) ND (0.99) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (1.7)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.85) ND (1.2) ND (1.2) ND (1.5) ND (0.85) ND (0.85) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.88) ND (0.88) ND (0.88) ND (0.88) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.18)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (0.87) ND (0.88) ND (0.38) ND (0.39) ND (0.39) ND (1.3) ND (1.3) ND (0.90) ND (0.90) ND (0.90) ND (0.13) ND (0.90) ND (0.13)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (1.2) ND (1.5) ND (0.87) ND (0.87) ND (0.87) ND (0.88) ND (0.94) ND (1.4) ND (1.3) ND (0.91) ND (0.13)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.81) ND (0.81) ND (0.85) ND (0.
viny chloride m, p-Xylene x-Xylene x-Xy	Ug/l	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (0.87) ND (1.5) ND (0.88) ND (0.38) ND (1.4) ND (1.3) ND (1.3) ND (0.90) ND (0.90) ND (0.13) ND (0.14) ND (0.14) ND (0.20) ND (0.20) ND (0.24)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.89) ND (1.3) ND (2.4) ND (1.6) ND (0.89) ND (0.89) ND (0.89) ND (0.39) ND (1.5) ND (1.3) ND (1.5) ND (1.3) ND (0.96) ND (0.96) ND (0.97) ND (0.98) ND (0.98) ND (0.99) ND (0.99) ND (0.99) ND (0.99) ND (0.91) ND (0.91) ND (0.91) ND (0.91) ND (0.92) ND (0.92) ND (0.92) ND (0.94)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.85) ND (1.2) ND (1.2) ND (1.3) ND (0.81) ND (1.3) ND (1.4) ND (1.3) ND (0.88) ND (0.89)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (1.5) ND (0.86) ND (0.86) ND (0.87) ND (0.38) ND (1.4) ND (1.3) ND (1.3) ND (0.90)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (1.5) ND (0.87) ND (0.88) ND (0.87) ND (0.38) ND (1.4) ND (1.3) ND (1.3) ND (0.94) ND (0.13) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.21) ND (0.21) ND (0.21)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.81)* ND (0.87) ND (0
viny chloride m, p-Xylene x-Xylene x-Xy	Ug/I	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (1.5) ND (0.88) ND (0.88) ND (0.88) ND (1.4) ND (1.3) ND (1.3) ND (0.38) ND (1.4) ND (1.3) ND (0.38) ND (0.13) ND (0.50) ND (0.13) ND (0.20) ND (0.20) ND (0.20) ND (0.23) ND (0.23)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.89) ND (1.3) ND (2.4) ND (1.6) ND (0.89) ND (0.89) ND (0.79) ND (1.5) ND (0.39) ND (0.59) ND (0.59) ND (0.59) ND (0.71) ND (0.71) ND (0.71) ND (0.71) ND (0.71) ND (0.72) ND (0.73) ND (0.73) ND (0.74) ND (0.74) ND (0.74) ND (0.75)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.85) ND (1.2) ND (0.85) ND (1.2) ND (0.85) ND (0.85) ND (0.81) ND (0.81) ND (0.37) ND (1.3) ND (1.3) ND (1.3) ND (0.37) ND (1.3) ND (0.85) ND (0.13) ND (0.14) ND (0.15) ND (0.15) ND (0.15) ND (0.16) ND (0.16) ND (0.17) ND (0.18)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (1.5) ND (0.88) ND (0.88) ND (0.89) ND (0.38) ND (1.4) ND (1.3) ND (0.38) ND (0.13) ND (0.50) ND (0.13) ND (0.20) ND (0.20) ND (0.20) ND (0.23) ND (0.23)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (1.5) ND (0.87) ND (0.88) ND (1.4) ND (1.3) ND (1.3) ND (1.3) ND (1.3) ND (0.31) ND (0.31) ND (0.31) ND (0.31) ND (0.32) ND (0.33)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.87) ND (0.
viny chloride m, p-Xylene x-Xylene x-Xy	Ug/l	1 1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.2) ND (1.3) ND (0.38) ND (0.38) ND (1.4) ND (1.3) ND (0.39) ND (0.41) ND (1.3) ND (0.50) ND (0.70)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (1.3) ND (1.3) ND (1.3) ND (1.4) ND (1.6) ND (0.89) ND (0.89) ND (0.39) ND (0.39) ND (0.59)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (1.5) ND (1.2) ND (1.2) ND (1.3) ND (1.5) ND (0.85) ND (0.81) ND (0.82) ND (0.83) ND (0.83) ND (0.84) ND (0.84) ND (0.83) ND (0.84)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (1.2) ND (1.2) ND (1.5) ND (0.86) ND (0.86) ND (0.86) ND (0.11) ND (1.3) ND (0.38) ND (1.4) ND (1.3) ND (0.50) ND (0.13) ND (0.50) ND (0.13) ND (0.50) ND (0.13) ND (0.20) ND (0.20) ND (0.20) ND (0.23) ND (0.33) ND (0.33) ND (0.33)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (1.2) ND (0.87) ND (0.87) ND (0.87) ND (0.88) ND (0.89) ND (0.49) ND (1.4) ND (1.5) ND (1.4) ND (1.5) ND (1.4) ND (1.5) ND (1.5) ND (1.5) ND (0.87) ND (0.88) ND (0.11) ND (0.12) ND (0.12) ND (0.13) ND (0.13) ND (0.13) ND (0.13) ND (0.14) ND (0.28) ND (0.14) ND (0.28) ND (0.40)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.81) ND (0.
//inj chloride n, p.Xylene Xylene Xylene Xylyene Xylye	Ug/l	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.71) ND (0.86) ND (0.85) ND (0.11) ND (0.86) ND (0.86) ND (0.11) ND (0.86) ND (0.87) ND (0.86)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.96) ND (0.96) ND (0.96) ND (0.97) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (0.97) ND (0.98) ND (0.98) ND (0.99) ND (0.99) ND (0.99) ND (0.99) ND (0.99) ND (0.14) ND (0.21) ND (0.21) ND (0.34) ND (0.34) ND (0.34) ND (0.34) ND (0.45) ND (0.46) ND (0.46) ND (0.46) ND (0.47) ND (0.47) ND (0.47) ND (0.48) ND (0.48)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.81) ND (0.81) ND (0.84) ND (0.85) ND (0.84) ND (0.86) ND (0.86) ND (0.87) ND (1.1) ND (0.88) ND (0.89) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.19) ND (0.19) ND (0.20) ND (0.42) ND (0.22) ND (0.33) ND (0.43) ND (0.43) ND (0.43) ND (0.44) ND (0.20)	ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (2.4) ND (2.4) ND (3.8) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.1) ND (0.86) ND (0.86) ND (0.1) ND (0.86) ND (0.1) ND (0.86) ND (0.86) ND (0.85)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.87) ND (0.88) ND (0.88) ND (0.94)* ND (0.88) ND (0.94)* ND (1.1)* ND (0.88) ND (0.94)* ND (1.1)* ND (0.19) ND (0.20) ND (0.21) ND (0.44) ND (0.28) ND (0.49)	ND (0.78) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.84) ND (0.81) ND (0.18) ND (0.20) ND (0.20) ND (0.43) ND (0.32) ND (0.32)
viny chloride m, p-Xylene b-Xylene b-Xy	Ug/I	1 1		ND (0.78) ND (0.59) ND (0.86) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.86) ND (0.86) ND (0.85) ND (0.85) ND (0.11) ND (0.86) ND (0.85) ND (0.11) ND (0.86) ND (0.11) ND (0.12) ND (0.13) ND (0.20) ND (0.43) ND (0.33) ND (0.41) ND (0.21) ND (0.21) ND (0.22) ND (0.21) ND (0.22)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.83) ND (1.3) ND (2.4) ND (0.88) ND (0.88) ND (0.88) ND (0.88) ND (0.88) ND (0.96) ND (0.78) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (0.78)	ND (0.78) ND (0.59) ND (0.86) ND (1.2) ND (2.3) ND (2.3) ND (0.84) ND (0.81) ND (0.84) ND (0.87) ND (1.1) ND (0.88) ND (0.89) ND (0.89) ND (0.89) ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.20) ND (0.20) ND (0.33) ND (0.44) ND (0.33) ND (0.44) ND (0.20)	ND (0.78) ND (0.59) ND (0.86) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.86) ND (0.86) ND (0.85) ND (0.85) ND (0.11) ND (0.86) ND (0.86) ND (0.11) ND (0.86) ND (0.11) ND (0.033) ND (1.4) ND (1.3) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.20) ND (0.20) ND (0.33) ND (0.44) ND (0.39) ND (0.44) ND (0.39) ND (0.49) ND (0.49) ND (0.21) ND (0.21) ND (0.22) ND (0.21)	ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.86) ND (0.86) ND (0.86) ND (0.86) ND (0.86) ND (0.87) ND (1.1) ND (0.88) ND (0.88) ND (0.11) ND (0.88) ND (0.11) ND (0.88) ND (0.11) ND (0.88) ND (0.11) ND (0.12) ND (0.13) ND (0.14) ND (0.15)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.87) ND (0.
viny chloride m, p-Xylene D-Xylene D-Xy	Ug/I	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.81) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.85) ND (0.85) ND (0.93) ND (0.93) ND (1.1) ND (0.93) ND (1.1) ND (0.93) ND (1.4) ND (1.3) ND (1.5) ND (0.93) ND (0.13) ND (0.13) ND (0.13) ND (0.20) ND (0.43) ND (0.21) ND (0.21) ND (0.23) ND (0.23) ND (0.21) ND (0.22) ND (0.23)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.96) ND (0.96) ND (0.96) ND (0.96) ND (0.97) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (0.97) ND (0.98) ND (0.98) ND (0.99) ND (0.99) ND (0.99) ND (0.19) ND (0.19) ND (0.19) ND (0.21) ND (0.21) ND (0.46) ND (0.48) ND (0.49) ND (0.49) ND (0.21) ND (0.23) ND (0.24) ND (0.25) ND (0.25) ND (0.25)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.84) ND (0.84) ND (0.84) ND (0.87) ND (1.1) ND (0.88) ND (0.89) ND (0.89) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.20) ND (0.43) ND (0.44) ND (0.22) ND (0.43) ND (0.24) ND (0.25)	ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.85) ND (0.85) ND (0.85) ND (0.93) ND (1.1) ND (0.86) ND (0.93) ND (1.1) ND (0.86) ND (0.93) ND (0.11) ND (0.86) ND (0.93) ND (0.13) ND (0.13) ND (0.13) ND (0.20) ND (0.43) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.43) ND (0.23)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.87) ND (0.88) ND (0.94)* ND (0.88) ND (0.94)* ND (1.1) or ND (0.88) ND (0.94)* ND (1.1) or ND (0.88) ND (0.94)* ND (1.1) or ND (0.91) ND (0.91) ND (0.91) ND (0.13) ND (0.19) ND (0.19) ND (0.19) ND (0.21) ND (0.44) ND (0.24) ND (0.45) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.23)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.81) ND (0.
//inyl chloride n, p.Xylene) Xylene) Xylene) Xylene) Xylene) Xylene (Sylene (total) MS Votatile TIC Fotal TiC, Votatile MS Semi-votatiles (SW846 82706 2-Chlorophenol -Chloro-S-methyl phenol -2-Chloro-S-methyl phenol -2-Dindrylphenol -2-Dindrylphenol -2-Dindrylphenol -3-Methylphenol -3-Methylpheno	Ug/1	1		ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (2.4) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.86) ND (0.87) ND (0.87) ND (0.88) ND (0.89)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.89) ND (1.3) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.96) ND (0.96) ND (0.96) ND (0.96) ND (0.97) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (0.97) ND (0.14) ND (0.21) ND (0.21) ND (0.24) ND (0.24) ND (0.24) ND (0.21) ND (0.21) ND (0.24) ND (0.24) ND (0.24) ND (0.25) ND (0.21) ND (0.24) ND (0.25) ND (0.26) ND (0.27) ND (0.27) ND (0.28) ND (0.28)	ND (0.78) ND (0.59) ND (0.84) ND (0.84) ND (0.84) ND (0.84) ND (0.87) ND (1.1) ND (0.88) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.11) ND (0.13) ND (0.18) ND (0.18) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.10) ND (0.10) ND (0.20) ND (0.32)	ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (2.4) ND (1.5) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.11) ND (0.86) ND (0.85) ND (0.11) ND (0.86) ND (0.85) ND (0.14) ND (1.3) ND (0.14) ND (0.14) ND (0.14) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.20) ND (0.44) ND (0.21) ND (0.21) ND (0.23) ND (0.27)	ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.81) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.86) ND (0.86) ND (0.94)* ND (0.87) ND (0.88) ND (0.94)* ND (1.1) ND (0.88) ND (0.94)* ND (1.1) ND (0.88) ND (0.94)* ND (0.11) ND (0.94) ND (0.95)	ND (0.78) ND (0.59) ND (0.85) ND (0.86) ND (0.87) ND (0.87) ND (0.18) ND (0.20) ND (0.32)
viny chloride m, p-Xylene D-Xylene D-Xy	Light Ligh	1		ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.81) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (2.4) ND (0.85) ND (0.11) ND (0.80) ND (0.80) ND (0.11) ND (0.80) ND (0.11) ND (0.80) ND (0.11) ND (0.11) ND (0.11) ND (0.12) ND (0.20) ND (0.43) ND (0.21) ND (0.21) ND (0.22) ND (0.23) ND (0.23) ND (0.23) ND (0.23) ND (0.23) ND (0.23) ND (0.21) ND (0.23) ND (0.21) ND (0.23) ND (0.21) ND (0.23) ND (0.21) ND (0.22) ND (0.33) ND (0.22) ND (0.33) ND (0.27) ND (0.27) ND (0.27) ND (0.27) ND (0.27)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (2.4) ND (0.83) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.96) ND (0.59) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (0.49) ND (0.49) ND (0.49) ND (0.49) ND (0.621) ND (0.21) ND (0.49) ND (0.49) ND (0.49) ND (0.49) ND (0.49) ND (0.54) ND (0.55) ND (0.58)	ND (0.78) ND (0.59) ND (0.84) ND (0.85) ND (1.2) ND (1.3) ND (0.85) ND (0.84) ND (0.84) ND (0.91)* ND (1.1)* ND (1.3) ND (0.84) ND (0.91)* ND (1.1)* ND (1.3) ND (0.84) ND (0.91)* ND (1.4) ND (1.3) ND (1.5) ND (1.4) ND (1.3) ND (0.84) ND (0.18) ND (0.20) ND (0.20) ND (0.32) ND (0.33)	ND (0.78) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.85) ND (0.85) ND (0.85) ND (0.93) ND (1.1) ND (0.86) ND (0.93) ND (1.1) ND (0.86) ND (0.93) ND (1.1) ND (0.86) ND (0.93) ND (0.13) ND (0.13) ND (0.13) ND (0.20) ND (0.43) ND (0.20) ND (0.43) ND (0.21) ND (0.23) ND (0.21) ND (0.23) ND (0.22) ND (0.23) ND (0.23) ND (0.21) ND (0.22) ND (0.23) ND (0.22) ND (0.23) ND (0.23) ND (0.22) ND (0.23) ND (0.22) ND (0.23) ND (0.23) ND (0.27) ND (0.27) ND (0.27) ND (0.27)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.87) ND (0.88) ND (0.94) ND (0.88) ND (0.94) ND (0.88) ND (0.94) ND (1.1) ND (0.88) ND (0.94) ND (1.1) ND (0.89) ND (1.1) ND (0.89) ND (1.4) ND (1.3) ND (1.4) ND (1.3) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.21) ND (0.40) ND (0.45) ND (0.22) ND (0.23) ND (0.22) ND (0.23) ND (0.23) ND (0.23) ND (0.21) ND (0.21) ND (0.22) ND (0.23) ND (0.22) ND (0.23) ND (0.21) ND (0.21) ND (0.22) ND (0.21) ND (0.22) ND (0.22) ND (0.23) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.21) ND (0.22)	ND (0.78) ND (0.59) ND (0.85) ND (0.87) ND (0.11) ND (0.13) ND (0.18) ND (0.20) ND (0.20) ND (0.32)
//inj chloride // inj chloride	Light Ligh	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.83) ND (0.83) ND (1.1) ND (0.83) ND (1.1) ND (0.83) ND (1.1) ND (0.83) ND (1.1) ND (0.83) ND (1.4) ND (1.3) ND (1.3) ND (1.3) ND (0.80) ND (1.4) ND (1.3) ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.10) ND (0.20) ND (0.21) ND (0.22) ND (0.23) ND (0.23) ND (0.22) ND (0.23) ND (0.27)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (2.4) ND (0.83) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.70) ND (0.89) ND (0.89) ND (0.70) ND (0.89) ND (0.89) ND (0.70) ND (0.89) ND (0.99) ND (0.99) ND (0.15) ND (0.61) ND (0.62) ND (0.64) ND (0.64) ND (0.64) ND (0.65) ND (0.65) ND (0.65) ND (0.65) ND (0.65)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (ND (0.78) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.85) ND (0.87)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.81)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78)
//inj chloride // inj chloride	Light Ligh	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.88) ND (0.81) ND (0.88) ND (1.1) ND (0.89) ND (0.14) ND (0.13) ND (0.13) ND (0.20) ND (0.20) ND (0.40) ND (0.21) ND (0.21) ND (0.22) ND (0.33) ND (0.22) ND (0.33) ND (0.23) ND (0.33) ND (0.21) ND (0.33) ND (0.21) ND (0.33) ND (0.21) ND (0.33) ND (0.21) ND (0.33) ND (0.22) ND (0.33) ND (0.21) ND (0.33) ND (0.22) ND (0.33) ND (0.21) ND (0.33) ND (0.22) ND (0.33) ND (0.33) ND (0.33) ND (0.34) ND (0.35)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (2.4) ND (0.89) ND (1.3) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.70) ND (0.89) ND (1.5) ND (0.89)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78) ND (0.78) ND (0.88) ND (0.88) ND (0.88) ND (0.88) ND (0.81) ND (ND (0.78) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.85) ND (0.86) ND (0.87) ND (0.88) ND (0.88) ND (0.88) ND (0.88) ND (0.89)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.81)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.78)
//inj chloride // inj chloride	Light	1		ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.81) ND (0.88) ND (0.81) ND (0.88) ND (1.1) ND (0.89) ND (0.14) ND (0.13) ND (0.20) ND (0.60)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (2.4) ND (0.89) ND (1.3) ND (2.4) ND (0.89) ND (0.89) ND (0.89) ND (0.70) ND (0.89) ND (0.70) ND (0.89) ND (0.70) ND (0.89) ND (0.70)	ND (0.78) ND (0.59) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.81) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (0.83) ND (0.84) ND (0.85)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.81)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.80) ND (0.80) ND (0.81) ND (0.81) ND (0.81) ND (0.87) ND (0.81)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.69) ND (0.78) ND (0.84) ND (0.81) ND (0.84) ND (0.87) ND (0.84) ND (0.84) ND (0.87) ND (0.84) ND (0.84) ND (0.87) ND (0.84) ND (0.84) ND (0.87) ND (0.87) ND (0.88) ND (0.88) ND (0.88) ND (0.88) ND (0.89)
/inj chloride m, pX-ylene pX-y	Light Ligh	1		ND (0.78) ND (0.59) ND (0.87) ND (1.24) ND (1.27) ND (1.24) ND (1.5) ND (0.86) ND (0.86) ND (0.87) ND (0.86) ND (0.87) ND (0.87) ND (0.87) ND (0.87) ND (0.88) ND (0.89) ND (0.89) ND (0.89) ND (0.11) ND (0.89) ND (0.19) ND (0.19) ND (0.19) ND (0.29) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.21) ND (0.24) ND (0.24) ND (0.25) ND (0.36) ND (0.54) ND (0.54) ND (0.54) ND (0.54) ND (0.56) ND (0.56) ND (0.56) ND (0.56) ND (0.56)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.83) ND (1.3) ND (2.4) ND (1.6) ND (0.89) ND (1.3) ND (1.6) ND (0.89) ND (1.6) ND (0.89) ND (1.5) ND (0.49) ND (0.49) ND (0.41) ND (0.21) ND (0.21) ND (0.45) ND (0.24) ND (0.24) ND (0.24) ND (0.24) ND (0.25) ND (0.26) ND (0.26) ND (0.26) ND (0.27) ND (0.27) ND (0.28) ND (0.29) ND (0.34) ND (0.29) ND (0.29) ND (0.34) ND (0.29) ND (0.37) ND (0.55) °	ND (0.78) ND (0.59) ND (0.85) ND (1.2) ND (0.85) ND (1.2) ND (0.85) ND (1.2) ND (0.85) ND (1.2) ND (0.85) ND (1.3) ND (0.15) ND (0.85) ND (0.11) ND (0.87) ND (0.11) ND (0.18) ND (0.18) ND (0.19) ND (0.20)	ND (0.78) ND (0.59) ND (0.87) ND (1.24) ND (1.5) ND (1.24) ND (1.5) ND (0.86) ND (0.86) ND (0.87) ND (1.3) ND (1.4) ND (1.3) ND (1.4) ND (1.3) ND (1.4) ND (1.3) ND (0.43) ND (0.43) ND (0.43) ND (0.29) ND (0.20) ND (0.20) ND (0.20) ND (0.21) ND (0.22) ND (0.23) ND (0.23) ND (0.23) ND (0.23) ND (0.24) ND (0.25) ND (0.25) ND (0.27) ND (0.28) ND (0.29) ND (0.39)	ND (0.78) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.87) ND (0.87) ND (1.2) ND (2.4) ND (1.2) ND (2.4) ND (1.5) ND (0.67) ND (0.68) ND (0.94) ND (0.89) ND (0.11) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.29) ND (0.21) ND (0.29) ND (0.29) ND (0.21) ND (0.29) ND (0.21) ND (0.29) ND (0.39) ND (0.39) ND (0.44) ND (0.29)	ND (0.78) ND (0.59) ND (0.85) ND (1.2) ND (0.85) ND (1.2) ND (0.85) ND (0.86) ND (0.87) ND (0.87) ND (0.88) ND (0.89)
/inj chloride // my Chloride // my Chloride // my Evylene // with the Chloride // with the Ch	Ug/1	1 1		ND (0.78) ND (0.59) ND (0.80) ND (0.81) ND (1.21) ND (1.21) ND (1.24) ND (1.25) ND (0.86) ND (0.86) ND (0.86) ND (0.87) ND (1.1) ND (1.31) ND (1.31) ND (0.41) ND (0.42) ND (0.43) ND (0.44) ND (0.45) ND (0.45) ND (0.46) ND (0.54) ND (0.62)	ND (0.78) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (0.83) ND (1.8) ND (1.9) ND (0.89) ND (0.89) ND (0.89) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.21) ND (0.22) ND (0.23) ND (0.25) ND (0.26) ND (0.27) ND (0.55) ND (0.57) ND (0.57) ND (0.51) ND (0.52) ND (0.53) ND (0.52) ND (0.53) ND (0.52) ND (0.53) ND (0.52) ND (0.53)	ND (0.78) ND (0.59) ND (0.65) ND (1.2) ND (0.85) ND (1.2) ND (1.3) ND (1.5) ND (0.85) ND (0.85) ND (0.15) ND (0.86) ND (0.11) ND (0.11) ND (0.11) ND (0.13) ND (0.18) ND (0.18) ND (0.19) ND (0.20)	ND (0.78) ND (0.89) ND (0.12) ND (1.24) ND (1.5) ND (0.86) ND (0.86) ND (0.86) ND (0.87) ND (1.1) ND (1.3) ND (1.4) ND (1.3) ND (1.4) ND (1.3) ND (0.89) ND (0.19) ND (0.29) ND (0.33) ND (0.29) ND (0.33) ND (0.29) ND (0.39) ND (0.21) ND (0.21) ND (0.21) ND (0.21)	ND (0.78) ND (0.89) ND (0.87) ND (1.2) ND (2.4) ND (1.5) ND (0.87) ND (0.88) ND (0.89) ND (0.89) ND (0.89) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.21) ND (0.21) ND (0.22) ND (0.24) ND (0.25) ND (0.27) ND (0.27) ND (0.27) ND (0.27) ND (0.29)	ND (0.78) ND (0.59) ND (0.85) ND (1.2) ND (0.85) ND (1.2) ND (0.85) ND (0.86) ND (0.86) ND (0.87) ND (0.86) ND (0.87) ND (0.87) ND (0.88) ND (0.18) ND (0.18) ND (0.18) ND (0.19) ND (0.20)
viny choircie m., p-Xylene »-Xylene MS Volatile TiC Total TiC, Volatile MS Semi-volatiles (SW846 82708 2-Chlorophand «-Chloro-3-methyl phenol «-Chloro-3-methyl phenol «-Chloro-3-methyl phenol «-A-Dinhirophenol «-A-Dinhirophenol «-A-Dinhirophenol «-A-Dinhirophenol «-A-Dinhirophenol «-A-Dinhirophenol «-A-Tichlorophenol «-A-Sirchlorophenol «-A-Sirchlorophenol «-A-Sirchlorophenol «-A-Sirchlorophenol «-A-Sirchlorophenol «-A-Sirchlorophenol «-A-Sirchlorophenol «-A-Sirchlorophenol «-Conaphithene «-Conaphi	Ug/1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ND (0.78) ND (0.59) ND (0.60) ND (0.70)	ND (0.78) ND (0.82) ND (0.85) ND (0.86) ND (0.86) ND (0.86) ND (0.87) ND (0.88) ND (0.88) ND (0.89) ND (0.15) ND (1.3) ND (0.15) ND (1.5) ND (0.15) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.23) ND (0.24) ND (0.24) ND (0.24) ND (0.25) ND (0.26) ND (0.27) ND (0.55) ND (0.56) ND (0.57) ND (0.57) ND (0.57) ND (0.57) ND (0.57) ND (0.52) ND (0.52) ND (0.52) ND (0.52) ND (0.53) ND (0.52) ND (0.53) ND (0.53) ND (0.53) ND (0.53) ND (0.53) ND (0.55) ND (0.56) ND (0.57) ND (0.57) ND (0.52) ND (0.57)	ND (0.78) ND (0.59) ND (0.60) ND (0.60) ND (0.60) ND (0.60) ND (0.61) ND (0.61) ND (0.61) ND (0.61) ND (0.62)	ND (0.78) ND (0.59) ND (0.60) ND (0.70)	ND (0.78) ND (0.89) ND (0.59) ND (0.67) ND (0.71) ND (0.72) ND (0.72) ND (0.73) ND (0.73) ND (0.74) ND (0.74) ND (0.74) ND (0.75) ND (0.75) ND (0.75) ND (0.75) ND (0.77) ND (0.78) ND (0.77) ND (0.77) ND (0.78) ND (0.77) ND (0.78) ND (0.78) ND (0.77) ND (0.78)	ND (0.78) ND (0.59) ND (0.85) ND (1.2) ND (1.2) ND (1.2) ND (1.2) ND (1.2) ND (0.85) ND (0.86) ND (0.87) ND (0.87) ND (0.87) ND (0.88) ND (0.18) ND (0.18) ND (0.18) ND (0.19) ND (0.20)
/inj chloride m, pX-ylene pX-y	Ug/1	1		ND (0.78) ND (0.59) ND (0.60) ND (0.70) ND (0.71)	ND (0.78) ND (0.82) ND (0.85) ND (1.3) ND (2.4) ND (1.5) ND (1.6) ND (0.86) ND (0.86) ND (0.76) ND (0.87) ND (0.88) ND (0.89)	ND (0.78) ND (0.59) ND (0.65) ND (0.65) ND (0.65) ND (0.65) ND (0.65) ND (0.65) ND (0.68) ND (0.11) ND (0.13) ND (0.18) ND (0.18) ND (0.19) ND (0.20) ND (0.21) ND (0.16) ND (0.16)	ND (0.78) ND (0.59) ND (0.60) ND (0.70)	ND (0.78) ND (0.89) ND (0.59) ND (0.67) ND (0.71) ND (0.71) ND (0.71) ND (0.72) ND (0.72) ND (0.73) ND (0.74) ND (0.74) ND (0.74) ND (0.75) ND (0.77)	ND (0.78) ND (0.59) ND (0.85) ND (1.2) ND (0.85) ND (0.87) ND (0.87) ND (0.88) ND (0.88) ND (0.89)
vinyi chloride m, p-Xylene x-Xylene x-X	Ug/1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ND (0.78) ND (0.59) ND (0.60) ND (0.70) ND (0.71)	ND (0.78) ND (0.82) ND (0.85) ND (1.3) ND (0.86) ND (0.86) ND (0.86) ND (0.87) ND (0.87) ND (0.88) ND (0.89) ND (0.14) ND (0.21) ND (0.21) ND (0.24) ND (0.24) ND (0.24) ND (0.24) ND (0.25) ND (0.26) ND (0.26) ND (0.27) ND (0.27) ND (0.28) ND (0.28) ND (0.29) ND (0.34) ND (0.29) ND (0.29) ND (0.29) ND (0.29) ND (0.29)	ND (0.78) ND (0.59) ND (0.65) ND (0.65) ND (0.65) ND (0.65) ND (0.65) ND (0.65) ND (0.71) ND (0.71) ND (0.71) ND (0.71) ND (0.72) ND (0.73) ND (0.73) ND (0.73) ND (0.74) ND (0.74) ND (0.75)	ND (0.78) ND (0.59) ND (0.60) ND (0.70)	ND (0.78) ND (0.89) ND (0.59) ND (0.67) ND (0.78)	ND (0.78) ND (0.59) ND (0.85) ND (1.2) ND (0.85) ND (0.85) ND (0.86) ND (0.86) ND (0.87) ND (0.86) ND (0.87) ND (0.88) ND (0.89)
viny choircie m, p-Xylene » Xylene Xylene (total) MS Volatile TiC Total TiC, Volatile MS Semt-volatiles (SW846 82708 2-Chiorophand « Chioro-3-methyl phenol « Chioro-3-methyl phenol « Chioro-3-methyl phenol « Chioro-3-methyl phenol « A-B-Dinkrophenol « A-B-Dinkrophenol « A-B-Dinkrophenol « A-B-Dinkrophenol « A-B-Tinchkrophenol » X-B-Tinchkrophenol « A-B-Tinchkrophenol » X-B-Tinchkrophenol « A-B-Tinchkrophenol » X-B-Tinchkrophenol « X-B-Tinchkrophenol » X-B-Tinchkrophen	Ug/1	1		ND (0.78) ND (0.59) ND (0.86) ND (0.87) ND (0.88) ND (0.88) ND (0.89)	ND (0.78) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (1.8) ND (0.86) ND (0.87) ND (0.87) ND (0.87) ND (0.88) ND (0.89)	ND (0.78) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.86) ND (0.87) ND (1.1) ND (0.11) ND (0.87) ND (1.1) ND (0.88) ND (0.88) ND (0.89) ND (0.89) ND (0.89) ND (0.89) ND (0.18) ND (0.18) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.20)	ND (0.78) ND (0.59) ND (0.86) ND (0.87) ND (0.88) ND (0.88) ND (0.89)	ND (0.78) ND (0.89) ND (0.59) ND (0.87) ND (1.2) ND (0.87)	ND (0.78) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.86) ND (0.81) ND (0.82) ND (0.83) ND (0.84) ND (0.84) ND (0.84) ND (0.84) ND (0.84) ND (0.85)
viny chloride m, p-Xylene x-Xylene x-Xy	Ugh	1		ND (0.78) ND (0.59) ND (0.80) ND (0.80) ND (0.81)	ND (0.78) ND (0.59) ND (1.3) ND (0.89) ND (1.3) ND (1.3) ND (1.4) ND (1.6) ND (0.89) ND (1.3) ND (0.89) ND (1.3) ND (0.89) ND (0.13) ND (0.89) ND (0.14) ND (0.89) ND (0.15) ND (0.15) ND (0.15) ND (0.15) ND (0.15) ND (0.15) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.24) ND (0.24) ND (0.24) ND (0.25) ND (0.25) ND (0.46) ND (0.27) ND (0.56) ND (0.28) ND (0.29) ND (0.59)	ND (0.78) ND (0.59) ND (0.89) ND (0.81) ND (0.82) ND (0.82) ND (0.82) ND (0.83) ND (0.83) ND (0.84) ND (0.85)	ND (0.78) ND (0.59) ND (0.80) ND (0.81)	ND (0.78) ND (0.59) ND (0.80) ND (0.80) ND (0.80) ND (0.80) ND (0.87) ND (1.2) ND (2.4) ND (2.4) ND (0.87) ND (0.88) ND (0.89) ND (0.89) ND (0.38) ND (1.4) ND (1.3) ND (0.14) ND (0.38) ND (0.14) ND (0.14) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.20) ND (0.20) ND (0.20) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.23) ND (0.24) ND (0.25) ND (0.25) ND (0.25) ND (0.27) ND (0.27) ND (0.28) ND (0.29) ND (0.21)	ND (0.78) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.81) ND (0.82) ND (0.82) ND (0.83) ND (0.83) ND (0.84) ND (0.83) ND (0.84) ND (0.85)
vinyi chloride m, p-Xylene x-Xylene x-X	Light Ligh	1		ND (0.78) ND (0.59) ND (0.69) ND (0.69) ND (0.69) ND (0.69) ND (0.69) ND (0.71) ND (0.72) ND (0.72) ND (0.73) ND (0.74) ND (0.74) ND (0.75) ND (0.77)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.83) ND (1.3) ND (1.6) ND (1.6) ND (0.86) ND (0.86) ND (0.86) ND (0.86) ND (0.86) ND (0.70)	ND (0.78) ND (0.59) ND (0.85) ND (1.2) ND (1.3) ND (0.85) ND (0.86)	ND (0.78) ND (0.59) ND (0.69) ND (0.69) ND (0.69) ND (0.69) ND (0.69) ND (0.71) ND (0.72)	ND (0.78) ND (0.89) ND (0.59) ND (0.87) ND (1.2) ND (0.87) ND (0.88) ND (0.40) ND (0.43) ND (0.43) ND (0.43) ND (0.43)	ND (0.78) ND (0.59) ND (0.85) ND (0.85) ND (0.81)
//inj chloride //inj	Ugh	1 1		ND (0.78) ND (0.59) ND (0.86) ND (0.87) ND (1.2) ND (1.2) ND (1.3) ND (0.86) ND (0.87) ND (0.87) ND (0.88) ND (0.88) ND (0.88) ND (0.89)	ND (0.78) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.82) ND (0.82) ND (0.83) ND (1.3) ND (2.4) ND (0.83) ND (1.5) ND (1.6) ND (0.86) ND (0.86) ND (0.86) ND (0.86) ND (0.87) ND (1.7) ND (0.88) ND (0.89) ND (0.15) ND (0.15) ND (0.15) ND (0.15) ND (0.14) ND (0.21) ND (0.21) ND (0.24) ND (0.24) ND (0.24) ND (0.25) ND (0.26) ND (0.27) ND (0.28) ND (0.28) ND (0.29)	ND (0.78) ND (0.59) ND (0.84) ND (0.84) ND (0.31) ND (0.32) ND (0.32) ND (0.32) ND (0.33) ND (0.33) ND (0.34) ND (0.34) ND (0.35)	ND (0.78) ND (0.59) ND (0.60) ND (0.86) ND (0.87) ND (0.87) ND (0.88) ND (0.88) ND (0.88) ND (0.89)	ND (0.78) ND (0.89) ND (0.59) ND (0.86) ND (0.86) ND (0.87) ND (1.2) ND (0.87) ND (0.87) ND (0.88) ND (0.89) ND (0.11) ND (0.91) ND (0.19) ND (0.19) ND (0.19) ND (0.19) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.23) ND (0.24) ND (0.27) ND (0.27) ND (0.29) ND (0.27)	ND (0.78) ND (0.59) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.84) ND (0.81) ND (0.82) ND (0.83) ND (0.84) ND (0.81) ND (0.81) ND (0.81) ND (0.82) ND (0.83) ND (0.84) ND (0.83) ND (0.84) ND (0.85) ND (0.85) ND (0.85) ND (0.85) ND (0.86) ND (0.87) ND (0.87) ND (0.87) ND (0.87) ND (0.87)

Table 6 No. 1 Landfarm July 2021 - Analytical Data Hess Corporation - Former Port Reading Complex 750 Cliff Road Port Reading, Middlesex County, New Jersey

Client Sample ID:		NJ Groundwater	NJ Interim	L1-1	L1-2	L1-3	L1-4	BG-2	BG-3
Lab Sample ID:		Criteria (NJAC	Groundwater	JD28114-1	JD28114-3	JD28114-6	JD28114-7	JD28114-2	JD28114-8
Date Sampled:		7:9C 9/4/18)1	Criteria (NJAC	7/13/2021	7/13/2021	7/13/2021	7/13/2021	7/13/2021	7/13/2021
Matrix:		ĺ	7:9C 1/17/19) ²	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water
1,2,4,5-Tetrachlorobenzene	ug/l		-	ND (0.36)	ND (0.37)	ND (0.35)	ND (0.36)	ND (0.36)	ND (0.35)
MS Semi-volatiles (SW846 827	OE BY SIN	(1)							
,									
4,6-Dinitro-o-cresol	ug/l	0.7	-	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)
Pentachlorophenol	ug/l	0.3	-	ND (0.13) °	ND (0.13) °	ND (0.12) °	ND (0.13) °	ND (0.13) °	ND (0.12) °
Benzo(a)anthracene	ug/l	0.1	-	ND (0.022)	ND (0.023)	ND (0.022)	ND (0.022)	ND (0.022)	ND (0.022)
Benzo(a)pyrene	ug/l	0.1	-	ND (0.032)	ND (0.033)	ND (0.032)	ND (0.032)	0.0330 J	ND (0.032)
Benzo(b)fluoranthene	ug/l	0.2	-	ND (0.042)	ND (0.043)	ND (0.041)	ND (0.042)	0.063	ND (0.041)
Benzo(k)fluoranthene	ug/l	0.5	-	ND (0.049)	ND (0.050)	ND (0.048)	ND (0.049)	ND (0.049)	ND (0.048)
Dibenzo(a,h)anthracene	ug/l	0.3	-	ND (0.049)	ND (0.050)	ND (0.048)	ND (0.049)	ND (0.049)	ND (0.048)
Hexachlorobenzene	ug/l	0.02	-	ND (0.011)	0.0169	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)
Hexachlorobutadiene	ug/l	1	-	ND (0.049)	ND (0.050)	ND (0.048)	ND (0.049)	ND (0.049)	ND (0.048)
Indeno(1,2,3-cd)pyrene	ug/l	0.2	-	ND (0.049)	ND (0.050)	ND (0.048)	ND (0.049)	ND (0.049)	ND (0.048)
1,4-Dioxane	ug/l	0.4	-	ND (0.049)	ND (0.050)	ND (0.048)	ND (0.049)	ND (0.049)	ND (0.048)
Metals Analysis									
Aluminum	ug/I	200		14100 ^d	<200	285	<200	297	<200
Arsenic		3	-	13.2 d	23.7	16.9	<3.0	6.1	8
Arsenic Barium	ug/l	6000	•	<400 ^d	322	<200	<200	<200	<200
	ug/l		-						
Cadmium	ug/l	4	-	<6.0 ^d	<3.0	<3.0	<3.0	<3.0	<3.0
Chromium	ug/l	70	-	36.6 ^d	<10	<10	<10	<10	<10
Iron	ug/I	300		30800 d					
			-		22400	4530	149	3530	14400
Lead	ug/l	5	-	28.6 ^d	22400 <3.0	<3.0	<3.0	<3.0	14400 <3.0
	ug/l ug/l	5 50	-	28.6 ^d					14400
Manganese				28.6 ^d 135 ^d <0.60 ^d	<3.0	<3.0	<3.0	<3.0	14400 <3.0
Manganese	ug/l	50	-	28.6 ^d	<3.0 296	<3.0 139	<3.0 <15	<3.0 38.5	14400 <3.0 335
Manganese Mercury Selenium	ug/l ug/l	50 2	-	28.6 ^d 135 ^d <0.60 ^d	<3.0 296 <0.20	<3.0 139 <0.20	<3.0 <15 <0.20	<3.0 38.5 <0.20	14400 <3.0 335 <0.20
Manganese Mercury	ug/l ug/l ug/l	50 2 40	-	28.6 ^d 135 ^d <0.60 ^d <20 ^d	<3.0 296 <0.20 <10	<3.0 139 <0.20 <10	<3.0 <15 <0.20 <10	<3.0 38.5 <0.20 <10	14400 <3.0 335 <0.20 <10
Manganese Mercury Selenium Silver	ug/l ug/l ug/l ug/l	50 2 40 40	-	28.6 d 135 d <0.60 d <20 d <20 d	<3.0 296 <0.20 <10 <10	<3.0 139 <0.20 <10 <10	<3.0 <15 <0.20 <10 <10	<3.0 38.5 <0.20 <10 <10	14400 <3.0 335 <0.20 <10 <10
Manganese Mercury Selenium Silver Sodium	ug/l ug/l ug/l ug/l	50 2 40 40	-	28.6 d 135 d <0.60 d <20 d <20 d	<3.0 296 <0.20 <10 <10	<3.0 139 <0.20 <10 <10	<3.0 <15 <0.20 <10 <10	<3.0 38.5 <0.20 <10 <10	14400 <3.0 335 <0.20 <10 <10
Manganese Mercury Selenium Silver	ug/l ug/l ug/l ug/l	50 2 40 40	-	28.6 d 135 d <0.60 d <20 d <20 d	<3.0 296 <0.20 <10 <10	<3.0 139 <0.20 <10 <10	<3.0 <15 <0.20 <10 <10	<3.0 38.5 <0.20 <10 <10	14400 <3.0 335 <0.20 <10 <10
Manganese Mercury Selenium Silver Sodium General Chemistry	ug/l ug/l ug/l ug/l	50 2 40 40 50000	-	28.6 d 135 d <0.60 d <20 d <20 d 28400 d	<3.0 296 <0.20 <10 <10 113000	<3.0 139 <0.20 <10 <10 51200	<3.0 <15 <0.20 <10 <10 <10000	<3.0 38.5 <0.20 <10 <10 20800	14400 <3.0 335 <0.20 <10 <10 20500

- Footnotes:

 a Associated CCV outside of control limits high. This compound in blank spike is outside in house QC limits blas high.

 b Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits blas high.

 c Associated CCV outside of control limits high, sample was ND.

 d Elevated sample detection limit due to difficult sample matrix.

No. 1 Landfarm October 2021 - Analytical Data Hess Corporation - Former Port Reading Complex

750 Cliff Road Port Reading, Middlesex County, New Jersey

Client Sample ID:			NJ Interim	L1-1	L1-2	L1-3	L1-4	BG-2	BG-3
Lab Sample ID: Date Sampled:		NJ Groundwater Criteria	Groundwater	JD33461-2 10/13/2021	JD33461-3 10/13/2021	JD33461-4 10/13/2021	JD33461-5 10/13/2021	JD33461-6 10/13/2021	JD33461-7 10/13/2021
Matrix:		Ontona	Criteria	Ground Water					
MS Volatiles (SW846 8260D)									
Acetone	ug/l	6000	•	ND (3.1)					
Benzene Bromochloromethane	ug/l ug/l	1 -	<u>-</u>	ND (0.43) ND (0.48)					
Bromodichloromethane	ug/l	1	-	ND (0.45)					
Bromoform Bromomethane	ug/l ug/l	4 10	-	ND (0.63) ND (1.6) ^b					
2-Butanone (MEK)	ug/l	300	-	ND (6.9)					
Carbon disulfide	ug/l	700	-	ND (0.46) °	ND (0.46) °	ND (0.46) °	ND (0.46) ^c	ND (0.46) °	ND (0.46) °
Carbon tetrachloride Chlorobenzene	ug/l ug/l	1 50	<u> </u>	ND (0.55) ND (0.56)	ND (0.55) 15.7	ND (0.55) ND (0.56)	ND (0.55) ND (0.56)	ND (0.55) ND (0.56)	ND (0.55) ND (0.56)
Chloroethane	ug/l	-	5	ND (0.73)					
Chloroform	ug/l	70	-	ND (0.50)					
Chloromethane Cyclohexane	ug/l ug/l	-	-	ND (0.76) ND (0.78)					
1,2-Dibromo-3-chloropropane	ug/l	0.02	-	ND (0.53)					
Dibromochloromethane	ug/l	1	-	ND (0.56)					
1,2-Dibromoethane 1,2-Dichlorobenzene	ug/l ug/l	0.03 600	<u> </u>	ND (0.48) ND (0.53)	ND (0.48) 0.55 J	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)
1,3-Dichlorobenzene	ug/l	600	-	ND (0.54)	0.81 J	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)
1,4-Dichlorobenzene Dichlorodifluoromethane	ug/l ug/l	75 1000	-	ND (0.51) ND (0.56)	1.9 ND (0.56)	ND (0.51) ND (0.56)	ND (0.51) ND (0.56)	ND (0.51) ND (0.56)	ND (0.51) ND (0.56)
1,1-Dichloroethane	ug/l	50	-	ND (0.56)					
1,2-Dichloroethane	ug/l	2	-	ND (0.60)					
1,1-Dichloroethene cis-1,2-Dichloroethene	ug/l ug/l	1 70	<u>.</u>	ND (0.59) ND (0.51)	ND (0.59) 0.57 J	ND (0.59) ND (0.51)	ND (0.59) ND (0.51)	ND (0.59) ND (0.51)	ND (0.59) ND (0.51)
trans-1,2-Dichloroethene	ug/l	100	-	ND (0.51)	ND (0.54)	ND (0.51)	ND (0.54)	ND (0.51)	ND (0.51)
1,2-Dichloropropane	ug/l	1	-	ND (0.51)					
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ug/l ug/l	-	-	ND (0.47) ND (0.43)					
Ethylbenzene	ug/l	700	-	ND (0.60)					
Freon 113	ug/l	20000	-	ND (0.58)					
2-Hexanone Isopropylbenzene	ug/l ug/l	40 700	-	ND (2.0) ND (0.65)					
Methyl Acetate	ug/l	7000	-	ND (0.80)					
Methylcyclohexane	ug/l	- 70	-	ND (0.60)					
Methyl Tert Butyl Ether 4-Methyl-2-pentanone(MIBK)	ug/l ug/l	70	<u> </u>	ND (0.51) ND (1.9)					
Methylene chloride	ug/l	3	-	ND (1.0)					
Styrene	ug/l	100 100	-	ND (0.49)					
Tert Butyl Alcohol 1,1,2,2-Tetrachloroethane	ug/l ug/l	100	<u> </u>	ND (5.8) ND (0.65) °					
Tetrachloroethene	ug/l	1	-	ND (0.90)					
Toluene 1,2,3-Trichlorobenzene	ug/l ug/l	600	-	ND (0.53) ND (0.50)					
1,2,4-Trichlorobenzene	ug/l	9	-	ND (0.50)					
1,1,1-Trichloroethane	ug/l	30	-	ND (0.54)					
1,1,2-Trichloroethane Trichloroethene	ug/l ug/l	3	-	ND (0.53) ND (0.53)					
Trichlorofluoromethane	ug/l	2000	-	ND (0.40)					
Vinyl chloride	ug/l	1	-	ND (0.79)					
m,p-Xylene o-Xylene	ug/l ug/l	-	<u> </u>	ND (0.78) ND (0.59)					
Xylene (total)	ug/l	1000	-	ND (0.59)					
MO VI - I-GIL- TIO									
MS Volatile TIC									
Total TIC, Volatile	ug/l	-	-	0	5.1 J	0	0	0	0
MS Semi-volatiles (SW846 8270E	Ε)								
2 Chlorophonol	lua/I	40	_	ND (0.79)	ND (0.82)	ND (0.78)	ND (0.78)	ND (0.83)	ND (0.82)
2-Chlorophenol 4-Chloro-3-methyl phenol	ug/l ug/l	-	100	ND (0.79)	ND (0.82)	ND (0.78)	ND (0.78)	ND (0.83)	ND (0.82)
2,4-Dichlorophenol	ug/l	20	-	ND (1.2)	ND (1.3)	ND (1.2)	ND (1.2)	ND (1.3)	ND (1.3)
2,4-Dimethylphenol	ug/l	100	-	ND (2.3)	ND (2.4) ND (1.6)	ND (2.3)	ND (2.3)	ND (2.5)	ND (2.4) ND (1.6)
2,4-Dinitrophenol 4,6-Dinitro-o-cresol	ug/l ug/l	40 0.7	-	ND (1.5) ND (1.2)	ND (1.6) ND (1.3)	ND (1.5) ND (1.2)	ND (1.5) ND (1.2)	ND (1.6) ND (1.3)	ND (1.6) ND (1.3)
2-Methylphenol	ug/l	50		ND (0.85) ^e	ND (0.89) e	ND (0.85) ^e	ND (0.85) °	ND (0.90) e	ND (0.89) °
3&4-Methylphenol	ug/l	50	-	ND (0.85)	ND (0.88)	ND (0.84)	ND (0.84)	ND (0.89)	ND (0.88)
2-Nitrophenol 4-Nitrophenol	ug/l ug/l	-	-	ND (0.92) ND (1.1)	ND (0.96) ND (1.2)	ND (0.92) ND (1.1)	ND (0.92) ND (1.1)	ND (0.97) ND (1.2)	ND (0.96) ND (1.2) °
Pentachlorophenol	ug/l	0.3	-	ND (1.3)	ND (1.4)	ND (1.3)	ND (1.3)	ND (1.4)	ND (1.4)
Phenol 2.3.4.6-Tetrachlorophenol	ug/l	2000	•	ND (0.38)	ND (0.39)	ND (0.38)	ND (0.38)	ND (0.40)	ND (0.39)
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/l ug/l	200 700	-	ND (1.4) ND (1.3)	ND (1.5) ND (1.3)	ND (1.4) ND (1.3)	ND (1.4) ND (1.3)	ND (1.5) ND (1.3)	ND (1.5) ° ND (1.3)
2,4,6-Trichlorophenol	ug/l	20	-	ND (0.89)	ND (0.92)	ND (0.88)	ND (0.88)	ND (0.93)	ND (0.92)
Acenaphthene	ug/l	400	- 100	ND (0.18)	ND (0.19)	0.37 J	ND (0.18)	ND (0.19)	ND (0.19)
Acenaphthylene Acetophenone	ug/l ug/l	700	100	ND (0.13) ND (0.20)	ND (0.14) ND (0.21)	ND (0.13) ND (0.20)	ND (0.13) ND (0.20)	ND (0.14) ND (0.21)	ND (0.14) ND (0.21)
Anthracene	ug/l	2000	-	ND (0.20)	ND (0.21)	ND (0.20)	ND (0.20)	ND (0.21)	ND (0.21)
Atrazine Benzaldehyde	ug/l	3	-	ND (0.43)	ND (0.45)	ND (0.43)	ND (0.43)	ND (0.45)	ND (0.45)
Benzaldehyde Benzo(a)anthracene	ug/l ug/l	0.1	-	ND (0.28) ND (0.20)	ND (0.29) ND (0.20)	ND (0.28) ND (0.19)	ND (0.28) ND (0.19)	ND (0.29) ND (0.21)	ND (0.29) ND (0.20)
Benzo(a)pyrene	ug/l	0.1	-	ND (0.20)	ND (0.21)	ND (0.20)	ND (0.20)	ND (0.22)	ND (0.21)
Benzo(b)fluoranthene	ug/l	0.2	100	ND (0.20)	ND (0.21)	ND (0.20)	ND (0.20)	ND (0.21)	ND (0.21)
Benzo(g,h,i)perylene	ug/l	-	100	ND (0.33)	ND (0.34)	ND (0.33)	ND (0.33)	ND (0.34)	ND (0.34)

No. 1 Landfarm October 2021 - Analytical Data Hess Corporation - Former Port Reading Complex

750 Cliff Road

Port Reading, Middlesex County, New Jersey

Company	Client Sample ID:			N. I. Indonésia	L1-1	L1-2	L1-3	L1-4	BG-2	BG-3
Martic Centers Martic Ce				NJ Interim Groundwater						
Benzophtrape plany effort 194 195 195 196	Date Sampled:		Criteria		10/13/2021		10/13/2021	10/13/2021	10/13/2021	10/13/2021
Absorphysic planet supt sup	Matrix:				Ground Water					
Supplement Sup	Benzo(k)fluoranthene		0.5	-						
1.5 Sphenor			-	-						
Schoolstophtelese										
Chrosopaning 192 30										
Carprolated	4-Chloroaniline			-						
Circyaene	Carbazole		-	-						
See Chemostherword Propriet See										
Selections of the property o										
2.2-Copyon (chromopropone)										
According to the color According to the co				-						
2.6 Diverbrotalemen (sgi) 2	4-Chlorophenyl phenyl ether		-	-				ND (0.35)		
3.3-Decinophenociene (sg)	2,4-Dinitrotoluene									
1.4. Discanse										
Debenced Javerhacene og2				-						
Debencourinam										
Dis-abugh phthalate				-						
Deathy phthalate	Di-n-butyl phthalate		700	-						
Direct D	Di-n-octyl phthalate			-					ND (0.24)	
Belle 2	Diethyl phthalate			-						
Fluorantene										
Fluorene ugil 300										
No Co No	Fluorene									
Heasethorocyclopentadene	Hexachlorobenzene			-						
Hexachtorechane	Hexachlorobutadiene	ug/l		-	ND (0.47)	ND (0.49)	ND (0.47)	ND (0.47)	ND (0.50)	ND (0.49)
Indenen(1,2)-collyprene ugfl 0,2										
Isophorone										
2-Methympathtalene				-						
2-Nitroaniline										
S-hitroanline Ugil - ND (0.37) ND (0.39) ND (0.37) ND (0.39) ND (0.22) ND (0.21) ND (0.41) ND (0.41) ND (0.41) ND (0.41) ND (0.41) ND (0.42) ND (0.23) ND (0.24) ND (0.46) ND (0.47) ND (0.21) ND				-						
Naphthalene Ugf 300	3-Nitroaniline			-						
Nitroberschein	4-Nitroaniline			-						
N-Nitrosco-In-propylamine ugl 10 - ND (0.46) ND (0.49) N				-						
N-Nitrospen lugil 10 - ND (0.21) ND (0.22) ND (0.21) ND (0.22) ND (0.21) ND (0.22) ND (0.22) ND (0.22) ND (0.21) ND (0.22) ND (0.22) ND (0.21) ND (0.22) ND (0.22) ND (0.22) ND (0.22) ND (0.21) ND (0.22) ND										
Phenanthrene ug/l -										
Pyrene										
1.2.4.5-fetachlorobenzene ug/l - ND (0.36) ND (0.37) N	Pyrene		200	-						
Metals Analysis Ug/l	1,2,4,5-Tetrachlorobenzene	ug/l	-	-	ND (0.36)	ND (0.37)	ND (0.36)	ND (0.36)	ND (0.37)	ND (0.37)
Metals Analysis Ug/l	MC Comi volotilo TIC									
Metals Analysis	W3 Seriii-volatile 11C									
Metals Analysis	Total TIC, Semi-Volatile	ug/l	-	-	0	12.8 J	0	0	6.2 J	0
Aluminum ug/l 200 - 851 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <20	- 1								l .	
Antimony	Metals Analysis									
Antimony			000		0=4			-000	-000	
Arsenic ug/l 3		_								
Barlum				-						
Beryllium										
Cadmium ug/l 4 - <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3	Beryllium									
Calcium	Cadmium			-						
Cobalt	Calcium									
Copper	Chromium									
Lead				-						
Magnesium ug/l - <5000 29500 22400 12900 <5000 7650 Manganese ug/l 50 - 15 448 582 18.8 85.6 359 Mercury ug/l 2 - <0.20	Level	- 0	-	-	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
Manganese Ug/l 50 - 15 448 552 18.8 85.6 359	Magnesium			-						
Mercury ug/l 2	Manganese	ug/l		-	15	448	582	18.8	85.6	359
Potassium	Mercury									
Selenium Ug/l 40 - <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <				-						
Silver Ug/l 40 - <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10										
Sodium Ug/l S0000 - 115000 192000 102000 <10000 74700 37300 Thallium Ug/l 2 - <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Vanadium Ug/l - - <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 Zinc Ug/l 2000 - 25.8 <20 27.6 <20 <20 <20 General Chemistry	Silver									
Thallium	Sodium			-						
Vanadium Ug/l -	Thallium			-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cyanide mg/l 0.1 - 0.022 0.029 0.064 0.016 0.024 0.03 Nitrogen, Ammonia mg/l 3 - <0.20	Vanadium		-	-						
Cyanide mg/l 0.1 - 0.022 0.029 0.064 0.016 0.024 0.03 Nitrogen, Ammonia mg/l 3 - <0.20 2.7 1.7 <0.20 1 0.75	Zinc	ug/l	2000	-	25.8	<20	27.6	<20	<20	<20
Cyanide mg/l 0.1 - 0.022 0.029 0.064 0.016 0.024 0.03 Nitrogen, Ammonia mg/l 3 - <0.20 2.7 1.7 <0.20 1 0.75	General Chemistry									
Nitrogen, Ammonia mg/l 3 - <0.20 2.7 1.7 <0.20 1 0.75										
Nitrogen, Ammonia mg/l 3 - <0.20 2.7 1.7 <0.20 1 0.75	Cyanida	ma!!	0.1		0.022	0.020	0.064	0.046	0.034	0.03
	Суание	mg/I	0.1	-	0.022	0.029	0.064	0.016	0.024	0.03
	Nitrogen, Ammonia	mg/l	3	-	<0.20	2.7	1.7	<0.20	1	0.75
Phenois mg/l - <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20										
	PhenoIs	mg/l	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Footnotes:

^{**}Protonotes:

a Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND. This compound in blank spike is outside in house QC limits bias high.

b Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

c Associated CCV outside of control limits high, sample was ND.

d This compound in blank spike is outside in house QC limits bias high.

a Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.

No.1 Landfarm July 2021 - Leachate

Hess Corporation - Former Port Reading Complex 750 Cliff Road

Port Reading, Middlesex County, New Jersey

Client Sample ID:		NJ Groundwater	JD27742-1
Date Sampled:		Criteria	7/6/2021
Matrix:			Water
MS Volatiles (EPA 624.1)			
, ,			ND (0.04)
Benzene Bromodichloromethane	ug/l ug/l	1	ND (0.34) ND (0.35)
Bromoform	ug/l	4	ND (0.60)
Bromomethane Carbon tetrachloride	ug/l ug/l	10	ND (0.87) ND (0.55)
Chlorobenzene	ug/l	50	ND (0.33)
Chloroethane	ug/l	-	ND (0.54)
2-Chloroethyl vinyl ether	ug/l	-	ND (2.5)
Chloroform Chloromethane	ug/l ug/l	70	ND (0.50) ND (0.78)
Dibromochloromethane	ug/l	1	ND (0.43)
1,2-Dichlorobenzene	ug/l	600	ND (0.30)
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/l ug/l	600 75	ND (0.50) ND (0.50)
Dichlorodifluoromethane	ug/l	1000	ND (0.69)
1,1-Dichloroethane	ug/l	50	ND (0.42)
1,2-Dichloroethane 1,1-Dichloroethene	ug/l ug/l	1	ND (0.39) ND (0.59)
cis-1,2-Dichloroethene	ug/l	70	ND (0.59)
rans-1,2-Dichloroethene	ug/l	100	ND (0.46)
1,2-Dichloropropane cis-1,3-Dichloropropene	ug/l	1 -	ND (0.42) ND (0.47)
rans-1,3-Dichloropropene	ug/l ug/l	-	ND (0.47) ND (0.37)
Ethylbenzene	ug/l	700	ND (0.30)
Methyl Tert Butyl Ether	ug/l	70	ND (0.37)
Methylene chloride Fertiary Butyl Alcohol	ug/l ug/l	3 100	ND (0.41) ND (2.6)
1,1,2,2-Tetrachloroethane	ug/l	1	ND (0.32)
Tetrachloroethene	ug/l	1	ND (0.41)
Foluene 1.1.1-Trichloroethane	ug/l ug/l	600 30	ND (0.36) ND (0.54)
1,1,2-Trichloroethane	ug/l	3	ND (0.41)
Trichloroethene	ug/l	1	ND (0.43)
Frichlorofluoromethane Vinyl chloride	ug/l ug/l	2000	ND (0.33) ND (0.79)
Kylenes (total)	ug/l	1000	ND (0.79)
MS Volatile TIC Total TIC, Volatile MS Semi-volatiles (EPA 625.1)	ug/I	-	0
Total TIC, Volatile MS Semi-volatiles (EPA 625.1)		- 40	
Total TIC, Volatile	ug/l ug/l ug/l	40	0 ND (0.78) ND (0.85)
Total TIC, Volatile WS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dichlorophenol	ug/l ug/l ug/l	40 - 20	ND (0.78) ND (0.85) ND (1.2)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dinethylphenol 2,4-Dimethylphenol	ug/l ug/l ug/l ug/l	40 - 20 100	ND (0.78) ND (0.85) ND (1.2) ND (2.3)
Total TIC, Volatile WS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dichlorophenol	ug/l ug/l ug/l	40 - 20	ND (0.78) ND (0.85) ND (1.2)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dimethylphenol 2,4-Dimitrophenol 3,6-Dinitro-o-cresol 2-Nitrophenol	ug/l ug/l ug/l ug/l ug/l ug/l	40 - 20 100 40 - 0.7	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (0.91)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dinitrophenol 3,6-Dinitro-o-cresol 2-Nitrophenol 1-Nitrophenol	ug/I ug/I ug/I ug/I ug/I ug/I ug/I	40 	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.2) ND (0.91) ND (1.1)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 4-Chloro-3-methyl phenol 2,4-Dimethylphenol 2,4-Dimitro-henol 4,6-Dinitro-o-cresol 2-Nitrophenol 1-Nitrophenol 2-Nitrophenol 2-Nitrophenol 3-Nitrophenol 3-Nitrophenol 4-Phenol	ug/l ug/l ug/l ug/l ug/l ug/l	40 - 20 100 40 0.7 - - 0.3 2000	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.2) ND (0.91) ND (1.1) ND (1.1) ND (1.3) 0.51 J
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dintrophenol 2,4-Dinitrophenol 3,6-Dinitro-o-cresol 2-Nitrophenol 1-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 - 20 100 40 0.7 - - 0.3 2000 700	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.9) ND (0.91) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (1.3)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Diniethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Diritrophenol 2-Nitrophenol 1-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-A,5-Trichlorophenol 2,4,5-Trichlorophenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 - 20 100 40 0.7 - - 0.3 2000	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.2) ND (0.91) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2-4-Dichlorophenol 2-4-Dinitrophenol 2-4-Dinitrophenol 3-4-Dinitrocresol 2-Nitrophenol 1-Nitrophenol 1-Nitrophenol 2-Initrophenol	ug/l ug/l	40 - 20 100 40 0.7 - - 0.3 2000 700 20 400 -	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.2) ND (0.91) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.13)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dinethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Diritrophenol 2-Nitrophenol 1-Nitrophenol 2-Inditrophenol 3-Inditrophenol 3-Inditro	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 -20 100 40 0.7 - 0.3 2000 700 20 400 - 2000	ND (0.78) ND (0.85) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.2) ND (0.91) ND (1.1) ND (1.3) ND (1.3) ND (1.3) ND (0.18) ND (0.18) ND (0.13) ND (0.13) ND (0.20)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2-4-Dichlorophenol 2-4-Dinitrophenol 2-4-Dinitrophenol 3-4-Dinitrocresol 2-Nitrophenol 1-Nitrophenol 1-Nitrophenol 2-Initrophenol	ug/l ug/l	40 - 20 100 40 0.7 - - 0.3 2000 700 20 400 -	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.2) ND (0.91) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.13)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dimethylphenol 2,4-Dimitrophenol 3,4-Dimitrophenol 2,4-Diritrophenol 3,6-Dinitro-o-cresol 2-Nitrophenol 3-Nitrophenol 3-Nitrophenol 3-Phenol 3-A,5-Trichlorophenol 3-4,5-Trichlorophenol 3-4,6-Trichlorophenol 3-Cenaphthylene 4-Cenaphthylene 4-Cenaphthylene 4-Cenaphthylene 3-Cenaphthylene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 -20 100 40 0.7 - - 0.3 2000 700 20 400 - - - 2000 20 0.1	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.2) ND (0.91) ND (1.1) ND (1.3) ND (1.3) ND (1.3) ND (0.18) ND (0.18) ND (0.13) ND (0.19) ND (0.20) ND (0.86) ND (0.19) ND (0.20)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dinklorophenol 2,4-Dinklorophenol 2,4-Dinklorophenol 3,6-Dinitro-o-cresol 2-Nitrophenol 1-Nitrophenol 1-Nitrophenol 2,4-5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-6-Trichlorophenol 2,6-Brichlorophenol 3-Cenaphthylene Acenaphthylene Anthracene 3-enzo(a)anthracene 3-enzo(a)pyrene 3-enzo(b)fluoranthene	Ug/I Ug/I	40 - 20 100 40 0.7 - - 0.3 2000 700 20 400 - - 2000 20 0.1 0.1 0.2	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.9) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.13) ND (0.20) ND (0.86) ND (0.19) ND (0.20)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dimethylphenol 2,4-Dimitrophenol 3,4-Dimitrophenol 2,4-Diritrophenol 3,6-Dinitro-o-cresol 2-Nitrophenol 3-Nitrophenol 3-Nitrophenol 3-Phenol 3-A,5-Trichlorophenol 3-4,5-Trichlorophenol 3-4,6-Trichlorophenol 3-Cenaphthylene 4-Cenaphthylene 4-Cenaphthylene 4-Cenaphthylene 3-Cenaphthylene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 -20 100 40 0.7 - - 0.3 2000 700 20 400 - - - 2000 20 0.1	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.2) ND (0.91) ND (1.1) ND (1.3) ND (1.3) ND (1.3) ND (0.18) ND (0.18) ND (0.13) ND (0.19) ND (0.20) ND (0.86) ND (0.19) ND (0.20)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3-Politrophenol 1-Nitrophenol 1-Nitrophenol 2-Initrophenol 2-Ini	ug/I ug/I	40 - 20 100 40 0.7 - - 0.3 2000 700 20 400 - 2000 0.1 0.1 0.2 - 0.5 -	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.88) ND (0.18) ND (0.13) ND (0.13) ND (0.20) ND (0.86) ND (0.19) ND (0.20)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-ChlorophenolChloro-3-methyl phenol 2,4-Dimitorphenol 2,4-Dimitorphenol 2,4-Dimitorphenol 2,4-Dimitorphenol 2,4-Dimitorphenol 2,4-Dimitorphenol 2-NitrophenolNitrophenolNitrophenolPenol 2,4,5-TrichlorophenolPenol 2,4,5-Trichlorophenol	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 - 20 100 40 0.7 - 0.3 2000 700 20 400 - 2000 20 0.1 0.1 0.1 0.2 - 1	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.13) ND (0.18) ND (0.18) ND (0.19) ND (0.19) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.20) ND (0.38) ND (0.20) ND (0.38) ND (0.20)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3-Politrophenol 1-Nitrophenol 1-Nitrophenol 2-Initrophenol 2-Ini	ug/I ug/I	40 - 20 100 40 0.7 - - 0.3 2000 700 20 400 - 2000 0.1 0.1 0.2 - 0.5 -	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.88) ND (0.18) ND (0.13) ND (0.13) ND (0.20) ND (0.86) ND (0.19) ND (0.20)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinithylphenol 2,4-Dinithylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Diritrophenol 2-Nitrophenol -Nitrophenol -Phenol -Phenol -Phenol -Phenol -Phenol -Acenaphthylphenol -Acenaphthylene -Anthracene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) piperlyene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.13) ND (0.18) ND (0.18) ND (0.19) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.22) ND (0.22) ND (0.22) ND (0.22) ND (0.22) ND (0.32)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 1,6-Dinitro-o-cresol 2-Nitrophenol 1,6-Dinitro-o-cresol 2-Nitrophenol 1-Nitrophenol 2-Intitrophenol 2-Intitro	Ug/I Ug/I	40 - 20 100 40 0.7 - - 0.3 2000 700 20 400 - 2000 20 0.1 0.1 0.2 - 0.5 - 100 600 30 5	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) O.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.13) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinithylphenol 2,4-Dinithylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Diritrophenol 2-Nitrophenol -Nitrophenol -Phenol -Phenol -Phenol -Phenol -Phenol -Acenaphthylphenol -Acenaphthylene -Anthracene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) piperlyene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.13) ND (0.18) ND (0.18) ND (0.19) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.22) ND (0.22) ND (0.22) ND (0.22) ND (0.22) ND (0.32)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3-Politrophenol 3-Polit	Ug/I	40 - 20 100 40 0.7 0.3 2000 700 20 400 - 2000 0.1 0.1 0.1 0.2 100 600 30 5 - 7 7 300	ND (0.78) ND (0.85) ND (1.2) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.18) ND (0.19) ND (0.20) ND (0.32) ND (0.21) ND (0.22) ND (0.32) ND (0.24) ND (0.24) ND (0.24) ND (0.25)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2-4-Dinipophenol 2-4-Dinipophenol 2-4-Dinipophenol 2-4-Dinipophenol 2-4-Dinipophenol 2-4-Dinipophenol 1-Nitrophenol 2-Nitrophenol 1-Nitrophenol 2-1-Nitrophenol 2-1-Nitrophenol 2-1-Nitrophenol 2-1-1-Nitrophenol 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40	ND (0.78) ND (0.85) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.3) ND (1.3) ND (1.3) ND (0.88) ND (0.18) ND (0.13) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.20) ND (0.32) ND (0.33) ND (0.24) ND (0.35) ND (0.35) ND (0.35)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3-Politrophenol 3-Polit	Ug/I	40 - 20 100 40 0.7 0.3 2000 700 20 400 - 2000 0.1 0.1 0.1 0.2 100 600 30 5 - 7 7 300	ND (0.78) ND (0.85) ND (1.2) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.18) ND (0.19) ND (0.20) ND (0.32) ND (0.21) ND (0.22) ND (0.32) ND (0.24) ND (0.24) ND (0.24) ND (0.25)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2-Nitrophenol 2-Nitrophen	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 - 20 100 40 0.7 - - 0.3 2000 700 20 400 - 20 0.1 0.1 0.2 - - 0.5 - 100 600 30 5 - 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	ND (0.78) ND (0.85) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.88) ND (0.18) ND (0.18) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.33) ND (0.44) ND (0.24) ND (0.32) ND (0.36) ND (0.24) ND (0.38) ND (0.38) ND (0.38) ND (0.38) ND (0.36) ND (0.21) ND (0.37) ND (0.18) ND (0.18) ND (0.18) ND (0.18)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinhorophenol 2,4-Dinhorophenol 2,4-Dinhorophenol 2,4-Dinhorophenol 2,4-Dinhorophenol 2,4-Dinhorophenol 2-Ritrophenol 3-Ritrophenol -Pentachlorophenol -Pentachlorophenol -Pentachlorophenol -Pentachlorophenol -Pentachlorophenol -Pentachlorophenol -Rocenaphthylene -Acenaphthylene -Acenaphthylene -Acenaphthylene -Anthracene -Benzo(a)anthracene -Benzo(a)hjiperylene -Benzo(b)fluoranthene -Benzo(b)fluoranthene -Benzo(b)fluoranthene -Benzo(b)fluoranthene -Benzo(b)fluoranthene -Prysene -Prysene -Prysene -Promophenyl phenyl ether -Chloronaphthalene -Chlorophenyl phenyl ether -Chlorophenyl phenyl ether -Chlorophenyl phenyl ether -Chlorophenyl phenyl ether -Prysene -	Ug/I Ug/I	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) O.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.18) ND (0.20) ND (0.86) ND (0.20) ND (0.32) ND (0.20) ND (0.38) ND (0.44) ND (0.20) ND (0.38) ND (0.44) ND (0.25) ND (0.26) ND (0.26) ND (0.27) ND (0.26) ND (0.26) ND (0.27) ND (0.28) ND (0.17) ND (0.26) ND (0.27) ND (0.28) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.16) ND (0.16) ND (0.16) ND (0.16)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2-Nitrophenol 2-Nitrophen	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	40 - 20 100 40 0.7 0.3 2000 700 20 400 - 20 0.1 0.1 0.1 0.2 - 100 600 30 5 - 7 300 - 100 600 30 5 - 7 300 - 600 20 600	ND (0.78) ND (0.85) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.88) ND (0.18) ND (0.18) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.33) ND (0.44) ND (0.24) ND (0.32) ND (0.36) ND (0.24) ND (0.38) ND (0.38) ND (0.38) ND (0.38) ND (0.36) ND (0.21) ND (0.37) ND (0.18) ND (0.18) ND (0.18) ND (0.18)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3-Pentol 2-Pentol 2-Pentol 2-Pentol 3-Pentol 3-	Ug/I Ug/I	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) O.51 J ND (0.13) ND (0.18) ND (0.13) ND (0.20) ND (0.38) ND (0.44) ND (0.25) ND (0.26) ND (0.27) ND (0.28) ND (0.29) ND (0.29) ND (0.39) ND (0.41) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.32) ND (0.32) ND (0.16) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.16) ND (0.15) ND (0.45) ND (0.45) ND (0.45) ND (0.48) ND (0.48)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Diniprophenol 2,4-Diniprophenol 2,4-Diniprophenol 2,4-Diniprophenol 2,4-Diniprophenol 2,4-Diniprophenol 2,4-Diniprophenol 2,4-Diniprophenol 2,4-S-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 3-Roenaphthene Acenaphthylene Anthracene 3-Benzo(a) anthracene 3-Benzo(a) pyrene 3-Benzo(a) pyrene 3-Benzo(a) hj.)perylene 3-Benzo(b) fluoranthene 3-Benzo(b) fluor	Ug/I Ug/I	40	ND (0.78) ND (0.85) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.18) ND (0.19) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.32) ND (0.44) ND (0.24) ND (0.35) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.16) ND (0.18) ND (0.16) ND (0.18) ND (0.16) ND (0.17) ND (0.16) ND (0.18) ND (0.16) ND (0.16) ND (0.18) ND (0.16) ND (0.18) ND (0.16) ND (0.45) ND (0.45) ND (0.47)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3,6-Dinitro-o-cresol 2-Nitrophenol 4,6-Dinitro-o-cresol 2-Nitrophenol 4,6-Trichlorophenol 2-Ritrophenol 3-Ritrophenol 3-Rit	Ug/I Ug/I	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) O.51 J ND (0.13) ND (0.18) ND (0.13) ND (0.20) ND (0.38) ND (0.44) ND (0.25) ND (0.26) ND (0.27) ND (0.28) ND (0.29) ND (0.29) ND (0.39) ND (0.41) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.22) ND (0.32) ND (0.32) ND (0.16) ND (0.18) ND (0.18) ND (0.18) ND (0.18) ND (0.16) ND (0.15) ND (0.45) ND (0.45) ND (0.45) ND (0.48) ND (0.48)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dimpophenol 2,4-Dimpophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol -Penol 2,4,5-Trichlorophenol -Penol 2,4,5-Trichlorophenol -Penol 2,4,5-Trichlorophenol -Penol 2,4,6-Trichlorophenol -Penol 2,4,6-Trichlorophenol -Rocenaphthylene -Anthracene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(a) pyrene -Benzo(b) fluoranthene -Benzo(a) pyrene -Benzo(b) fluoranthene -Benzo(a) pyrene -Benzo(b) fluoranthene -Benzo(a) pyrene -Benzo(b) fluoranthene -Benzo(b) fluoranthene -Benzo(a) pyrene -Benzo(b) fluoranthene -Chlorophenyl phenyl ether -Chlorophenyl phenyl ether -(b) fluoranthene -Chlorophenyl phenyl ether -(c) pythialate -Benzo(a), h) anthracene -Ch-Dirtorobenzene -(d) phthalate -Dien-butyl phthalate -Dientyl phthalate	Ug/I Ug/I	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.7) ND (1.1) ND (1.3) 0.51 J ND (1.3) ND (0.88) ND (0.18) ND (0.18) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.20) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.38) ND (0.41) ND (0.38) ND (0.18) ND (0.38) ND (0.18) ND (0.19) ND (0.45) ND (0.42) ND (0.42) ND (0.42) ND (0.42) ND (0.45) ND (0.22) ND (0.25) ND (0.25)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3-Dinitro-o-cresol 2-Nitrophenol 3-Nitrophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Rocenaphthene 3-Rocenaphth	Ug/I Ug/I	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) ND (1.3) ND (1.3) ND (1.3) ND (0.88) ND (0.18) ND (0.18) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.20) ND (0.38) ND (0.18) ND (0.16) ND (0.18) ND (0.16) ND (0.18) ND (0.16) ND (0.17) ND (0.20) ND (0.20) ND (0.20) ND (0.18) ND (0.22) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.21) ND (1.6)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol 1-Chloro-3-methyl phenol 2-4-Dinitrophenol 2-4-Dinitrophenol 2-4-Dinitrophenol 2-4-Dinitrophenol 2-4-Dinitrophenol 3-4-Dinitrophenol 1-Nitrophenol 1-Nitrop	Ug/I	40	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) 0.51 J ND (0.88) ND (0.18) ND (0.18) ND (0.18) ND (0.19) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.32) ND (0.18) ND (0.19) ND (0.45) ND (0.45) ND (0.47) ND (0.22) ND (0.47) ND (0.22) ND (0.21) ND (0.21) ND (0.21) ND (0.21) ND (0.25) ND (0.21) ND (0.25) ND (0.21) ND (0.25) ND (0.21) ND (0.26) ND (0.21) ND (0.26)
Fotal TIC, Volatile MS Semi-volatiles (EPA 625.1) 2-Chlorophenol -Chloro-3-methyl phenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 3-Dinitro-o-cresol 2-Nitrophenol 3-Nitrophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Pentachlorophenol 3-Rocenaphthene 3-Rocenaphth	Ug/I Ug/I	40 - 20 100 40 0.7 - 0.3 2000 700 20 400 - 20 0.1 0.1 0.1 0.2 - 100 600 30 5 - 7 7 300 - 600 20 600 75 - 30 0.3 700 100 6000 - 3 3 3 3 30 5 30 3 30 5 30 30 3	ND (0.78) ND (0.85) ND (1.2) ND (2.3) ND (1.5) ND (1.5) ND (1.5) ND (1.1) ND (1.1) ND (1.3) ND (1.3) ND (1.3) ND (1.3) ND (0.88) ND (0.18) ND (0.18) ND (0.20) ND (0.86) ND (0.19) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.20) ND (0.32) ND (0.20) ND (0.38) ND (0.18) ND (0.16) ND (0.18) ND (0.16) ND (0.18) ND (0.16) ND (0.17) ND (0.20) ND (0.20) ND (0.20) ND (0.18) ND (0.22) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.21) ND (1.6)

No.1 Landfarm July 2021 - Leachate

Hess Corporation - Former Port Reading Complex 750 Cliff Road

Port Reading, Middlesex County, New Jersey

Lab Sample ID:	
Lexachirocethane	
March Marc	1
Sephorone	
Naphthalene Ug/l 300	
New No.)
N-Nitroso-di-n-propylamine	
N-Nitrosodie-h-butylamine	
N-Nitrosodiethylamine Ug/l 10 ND (0.21 N-Nitrosophyrolidine Ug/l 10 ND (0.21 N-Nitrosophyrolidine Ug/l - ND (0.75 ND (0.7	
N-Nitrosopyrrolidine	
Pentachlorobenzene ug/l - ND (0.25) Phenanthrene ug/l - ND (0.17) Pyrene ug/l - ND (0.17) Pyrene ug/l - ND (0.17) Pyrene ug/l - ND (0.25) Pyrene ug/l - ND (0.35) Pyrene ug/l 0.04 ND (0.077 J (0.05) Pyrene ug/l 0.02 ND (0.05) Pyrene ug/l 0.04 ND (0.077 J (0.05) Pyrene ug/l 0.04 ND (0.077 J (0.05) Pyrene ug/l 0.04 ND (0.077 J (0.05) Pyrene ug/l 0.05 ND (0.35) Pyrene ug/l 0.06 ND (0.05) Pyrene ug/l 0.07 ND (0.05) Pyrene ug/l 0.08 ND (0.077 J (0.05) Pyrene ug/l 0.09 ND (0.05) Pyrene ug/l 0.1 ND (0.05) Pyrene ug/l 0.5 ND (0.17) Pyrene ug/l 0.5 ND (0.1	
Penanthrene Igg	
Description	
1.2.4.5-Tetrachlorobenzene	
1,2,4-Tichlorobenzene	
MS Semi-volatile TIC	
Contact Cont	
Contact Cont	
Aldrin	
Aldrin	
Aldrin	
Application	
Application	
Deta-BHC Ug/I 0.04 ND (0.01	
Idelta-BHC Ide	
Jamma-BHC (Lindane) Ug/l 0.03 ND (0.007	
Chlordane	
Dieldrin Ug/I 0.03 ND (0.005 1.4-DDD Ug/I 0.1 ND (0.005 1.4-DDD Ug/I 0.1 ND (0.005 1.4-DDT 1.	
A'-DDD	
1.4*-DDE	7)
Endrin	
Endosulfan sulfate ug/l 40 ND (0.007 Endosulfan sulfate ug/l - ND (0.017 Endosulfan-l ug/l 40 0.010 J Endosulfan-l ug/l 40 ND (0.007 Endosulfan-l ug/l 40 ND (0.007 Eleptachlor ug/l 0.05 ND (0.007 Eleptachlor epoxide ug/l 0.2 ND (0.007 Eleptachlor epoxide ug/l 40 ND (0.008 Eleptachlor epoxide ug/l 0.5 ND (0.008 Eleptachlor epoxide	
Endrin aldehyde	
Endosulfan-I ug/I 40 0.010 J Endosulfan-II ug/I 40 ND (0.007 Indosulfan-II ug/I 40 ND (0.007 Indosulfan-II ug/I 0.05 ND (0.008 Indeptachlor ug/I 0.05 ND (0.008 Indeptachlor epoxide ug/I 0.2 ND (0.008 Indethoxychlor ug/I 40 ND (0.008 Indethoxychlor ug/I 2 ND (0.12 Indethoxychlor ug/I 0.5 ND (0.12 Indethoxychlor 1016 ug/I 0.5 ND (0.12 Indethoxychlor 1221 ug/I 0.5 ND (0.12 Indethoxychlor 1232 ug/I 0.5 ND (0.12 Indethoxychlor 1242 ug/I 0.5 ND (0.12 Indethoxychlor 1243 ug/I 0.5 ND (0.12 Indethoxychlor 1244 ug/I 0.5 ND (0.12 Indethoxychlor 1248 ug/I 0.5 ND (0.13 Indethoxychlor 1248 ug/I 0.5 ND (0.13 Indethoxychlor 1254 ug/I 0.5 ND (0.13 Indethoxychlor 1260 ug/I 0.5 ND (0.17 Indethoxychlor 1260 ug/I 0.5 ND (0.17 Indethoxychlor 1260 ug/I 0.1 ND (0.03 Indethoxychlor 1260 ug/I 0.1 ND (0.03 Indethoxychlor 1260 ND (0.17 Indethoxychlor 1260 ND (0.18 Indethox	
Endosulfan-II	
Image	
Heptachlor epoxide	
Toxaphene Ug/l 2	
Arcolor 1016 ug/l 0.5 ND (0.21 Arcolor 1221 ug/l 0.5 ND (0.62 Arcolor 1221 ug/l 0.5 ND (0.62 Arcolor 1232 ug/l 0.5 ND (0.18 Arcolor 1242 ug/l 0.5 ND (0.18 Arcolor 1248 ug/l 0.5 ND (0.12 Arcolor 1254 ug/l 0.5 ND (0.12 Arcolor 1260 ug/l 0.5 ND (0.17 Arcolor 1260 ug/l 0.1 ND (0.03 Arcolor 1260 ug/l 0.1 ND (0.03 Arcolor 1260 ug/l 1 ND (0.03 Arcolor 1260 ND (0.66 Arcolor 1260 ug/l 1 ND (0.66 Arcolor 1260 ug/l 1 ND (0.96 Arcolor 1248 ug/l 1 ND (0.96 Arcolor 1260 ug/l 1 ND (0.96 Arcolor 1260 ug/l 1 ND	
Arcolor 1221 lug/l 0.5 ND (0.62 Arcolor 1221 lug/l 0.5 ND (0.18 Arcolor 1232 lug/l 0.5 ND (0.18 Arcolor 1242 lug/l 0.5 ND (0.18 Arcolor 1242 lug/l 0.5 ND (0.18 Arcolor 1248 lug/l 0.5 ND (0.17 Arcolor 1254 lug/l 0.5 ND (0.17 Arcolor 1260 lug/l 0.1 ND (0.003 Arcolor 1260 lug/l 0.1 ND (0.003 Arcolor 1260 lug/l 0.1 ND (0.003 Arcolor 1260 lug/l 1 ND (0.003 Arcolor 1260 lug/l 1 ND (0.604 Arcolor 1260 lug/l 1 ND (0.604 Arcolor 1260 lug/l 1 ND (0.604 Arcolor 1260 lug/l 1 ND (0.404	
Arcolor 1232 ug/l 0.5 ND (0.18 Arcolor 1232 ug/l 0.5 ND (0.24 Ug/l 0.5 ND (0.17 Arcolor 1254 Ug/l 0.5 ND (0.17 Arcolor 1260 Ug/l 0.5 ND (0.17 Arcolor 1260 Ug/l 0.5 ND (0.17 ND (0.17 Ug/l 0.5 Ug/l 0.5 ND (0.17 Ug/l 0.5 Ug/l 1 ND (0.17 Ug/l Ug/l Ug/l 1 ND (0.17 Ug/l Ug/l	
Aroclor 1242 ug/l 0.5 ND (0.24 Aroclor 1248 ug/l 0.5 ND (0.124 Ug/l 0.5 ND (0.124 Ug/l 0.5 ND (0.124 Ug/l 0.5 ND (0.174 Ug/l 0.1 ND (0.003 Ug/l 0.1 ND (0.003 Ug/l 0.1 Ug/l Ug/l 0.1 Ug/l 0.1 Ug/l 0.1 Ug/l 0.1 Ug/l 0.1 Ug/l 0.1 Ug/l Ug/l 0.1 Ug/l 0.1 Ug/l 0.1 Ug/l Ug/l Ug/l 0.1 Ug/l Ug	
Arcolor 1248	
Aroclor 1254 ug/l 0.5 ND (0.17 Aroclor 1260 ug/l 0.5 ND (0.17 Aroclor 1280 ug/l 0.5 ND (0.17 3C/LC Semi-volatiles (SW846 8081B) Mirex ug/l 0.1 ND (0.003 3C/LC Semi-volatiles (SW846 8141B) Chlorpyrifos ug/l 20 ND (0.66 Demeton ug/l 1 ND (0.91 Ethyl Parathion ug/l 4 ND (0.54 Malathion ug/l 100 ND (0.44 Metals Analysis Antimony ug/l 6 <6.0	
SG/LC Semi-volatiles (SW846 8081B) SG/LC Semi-volatiles (SW846 8141B)	
Mirex Ug/I 0.1 ND (0.003 Color ND (0.003 Color ND (0.004 ND (0.66 ND	
Mirex Ug/I 0.1 ND (0.003 Color ND (0.003 Color ND (0.004 ND (0.66 ND	
Chlorpyrifos Ug/l 20 ND (0.66	
Ug/l 20	6)
Ug/l 20	
Demeton Ug/l 1	
Demeton Ug/l 1	
Ethyl Parathion ug/l 4 ND (0.64 Malathion ND (0.44 Malathion ND (0.45 Methyl Azinphos (Guthion) ND (0.44 Methyl Azinphos (Guthion) ND (0	
Malathion ug/l 100 ND (0.49 Methyl Azinphos (Guthion) Methyl Azinphos (Guthion) ug/l - ND (0.44 Methyl Azinphos (Guthion) Metals Analysis Antimony ug/l 6 <6.0	
Methyl Azinphos (Guthion) ug/l - ND (0.44) Metals Analysis Antimony ug/l 6 <6.0)
Antimony ug/l 6 <6.0	
Antimony ug/l 6 <6.0	
Arsenic ug/l 3 6.3	
Beryllium ug/l 1 <1.0	
Cadmium ug/I 4 <3.0	
Chromium ug/l 70 <10	
Copper ug/l 1300 10.3	
_ead ug/l 5 <3.0	
Mercury ug/l 2 <0.20 Nickel ug/l 100 40	
Nickei ug/l 100 40 Selenium ug/l 40 <10	
Silver ug/l 40 <10	
Thallium ug/l 2 <0.50	
Zinc ug/l 2000 34.3	
Occupation of the section of the sec	
General Chemistry	
Chloride mg/l 250 8.9	
Cyanide mg/l 0.1 <0.010	
Nitrogen, Ammonia mg/l 3 0.54	
Phenois mg/l - <0.20	

Footnotes: ^a More than 40 % RPD for detected concentrations between the two GC columns. ^b Associated CCV outside of control limits high, sample was ND.

No. 1 Landfarm October 2021 - Leachate Hess Corporation - Former Port Reading Complex Port Reading, Middlesex County, New Jersey

Client Sample ID:		NI Committee of	LEACHATE
Lab Sample ID:		NJ Groundwater Criteria	JD32779-1
Date Sampled: Matrix:			10/4/2021 Water
			**utoi
MS Volatiles (EPA 624.1)			
Benzene	ug/l	1	ND (0.34)
Bromodichloromethane Bromoform	ug/l ug/l	1 4	ND (0.35) ND (0.60) ^a
Bromomethane	ug/l	10	ND (0.87)
Carbon tetrachloride	ug/l	1	ND (0.55)
Chlorobenzene Chloroethane	ug/l ug/l	50	ND (0.33) ND (0.54)
2-Chloroethyl vinyl ether	ug/l	-	ND (2.5)
Chloroform Chloromethane	ug/l ug/l	70	ND (0.50) ND (0.78)
Dibromochloromethane	ug/l	1	ND (0.43)
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/l ug/l	600 600	ND (0.30) ND (0.50)
1,4-Dichlorobenzene	ug/l	75	ND (0.50)
Dichlorodifluoromethane	ug/l	1000	ND (0.69)
1,1-Dichloroethane 1,2-Dichloroethane	ug/l ug/l	50 2	ND (0.42) ND (0.39)
1,1-Dichloroethene	ug/l	1	ND (0.59)
cis-1,2-Dichloroethene rans-1,2-Dichloroethene	ug/l ug/l	70 100	ND (0.51) ND (0.46)
,2-Dichloropropane	ug/l	1	ND (0.42)
cis-1,3-Dichloropropene	ug/l	-	ND (0.47)
rans-1,3-Dichloropropene Ethylbenzene	ug/l ug/l	700	ND (0.37) ND (0.30)
Methyl Tert Butyl Ether	ug/l	70	0.41 J
Methylene chloride Fertiary Butyl Alcohol	ug/l ug/l	3 100	ND (0.41) ND (2.6)
1,1,2,2-Tetrachloroethane	ug/l	1	ND (0.32)
Tetrachloroethene Toluene	ug/l ug/l	1 600	ND (0.41) ND (0.36)
1,1,1-Trichloroethane	ug/l	30	ND (0.54)
1,1,2-Trichloroethane	ug/l	3	ND (0.41)
Trichloroethene Trichlorofluoromethane	ug/l ug/l	2000	ND (0.43) ND (0.33)
/inyl chloride	ug/l	1	ND (0.79)
(ylenes (total)	ug/l	1000	ND (0.35)
MS Volatile TIC			
Total TIC, Volatile	ug/l		0
Total TIC, Volatile	ug/i	-	U
MS Semi-volatiles (EPA 625.1)			
2-Chlorophenol	ug/l	40	ND (0.83)
4-Chloro-3-methyl phenol	ug/l	-	ND (0.90)
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/l ug/l	20 100	ND (1.3) ND (2.5)
2,4-Dinitrophenol	ug/l	40	ND (1.6)
4,6-Dinitro-o-cresol	ug/l	0.7	ND (1.3)
2-Nitrophenol 4-Nitrophenol	ug/l ug/l	-	ND (0.97) ND (1.2)
Pentachlorophenol	ug/l	0.3	ND (1.4)
Phenol 2,4,5-Trichlorophenol	ug/l ug/l	2000 700	ND (0.40) ND (1.3)
2,4,6-Trichlorophenol	ug/l	20	ND (0.93)
Acenaphthene	ug/l	400	ND (0.19)
Acenaphthylene Anthracene	ug/l ug/l	2000	ND (0.14) ND (0.21)
Benzidine	ug/l	20	ND (0.91) [□]
Benzo(a)anthracene Benzo(a)pyrene	ug/l ug/l	0.1 0.1	ND (0.21) ND (0.22)
Benzo(b)fluoranthene	ug/l	0.2	ND (0.21)
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/l ug/l	0.5	ND (0.34) ND (0.21)
4-Bromophenyl phenyl ether	ug/i ug/l	-	ND (0.21) ND (0.41)
Butyl benzyl phthalate	ug/l	100	ND (0.46)
2-Chloronaphthalene 4-Chloroaniline	ug/l ug/l	600 30	ND (0.24) ND (0.34)
Chrysene	ug/l	5	ND (0.18)
pis(2-Chloroethoxy)methane pis(2-Chloroethyl)ether	ug/l	7	ND (0.28) ND (0.25)
2,2'-Oxybis(1-chloropropane)	ug/l ug/l	300	ND (0.25) ND (0.41)
I-Chlorophenyl phenyl ether	ug/l	-	ND (0.37)
1,2-Dichlorobenzene 1,2-Diphenylhydrazine	ug/l ug/l	600 20	ND (0.17) ND (0.19)
,3-Dichlorobenzene	ug/l	600	ND (0.19)
,4-Dichlorobenzene 2,4-Dinitrotoluene	ug/l ug/l	75	ND (0.17) ND (0.56)
2,6-Dinitrotoluene	ug/l	-	ND (0.48)
3,3'-Dichlorobenzidine	ug/l	30	ND (0.51)
Dibenzo(a,h)anthracene Di-n-butyl phthalate	ug/l ug/l	0.3 700	ND (0.33) ND (0.50)
Di-n-octyl phthalate	ug/l	100	ND (0.24)
Diethyl phthalate Dimethyl phthalate	ug/l	6000	ND (0.26) ND (0.22)
Dimetnyi pritralate Dis(2-Ethylhexyl)phthalate	ug/l ug/l	3	ND (0.22) ND (1.7)
Fluoranthene	ug/l	300	ND (0.17)
Fluorene Hexachlorobenzene	ug/l ug/l	300 0.02	ND (0.17) ND (0.33)
Hexachlorobutadiene	ug/l	1	ND (0.50)
Hexachlorocyclopentadiene	ug/l	40	ND (2.8) ^c
Hexachloroethane ndeno(1,2,3-cd)pyrene	ug/l ug/l	7 0.2	ND (0.39) ND (0.34)
Isophorone	ug/l	40	ND (0.28)

No. 1 Landfarm October 2021 - Leachate **Hess Corporation - Former Port Reading Complex** Port Reading, Middlesex County, New Jersey

Client Sample ID:			LEACHATE
Lab Sample ID:		NJ Groundwater	JD32779-1
Date Sampled:		Criteria	10/4/2021
Matrix:			Water
Naphthalene	ug/l	300	ND (0.23)
Nitrobenzene	ug/l	6	ND (0.65)
n-Nitrosodimethylamine	ug/l	0.8	ND (0.82)
N-Nitroso-di-n-propylamine	ug/l	10	ND (0.49)
N-Nitrosodi-n-butylamine	ug/l	-	ND (0.61)
N-Nitrosodiethylamine N-Nitrosodiphenylamine	ug/l	- 10	ND (0.24) ND (0.22)
N-Nitrosopyrrolidine	ug/l ug/l	-	ND (0.74)
Pentachlorobenzene	ug/l	-	ND (0.25)
Phenanthrene	ug/l	-	ND (0.18)
Pyrene	ug/l	200	ND (0.22)
1,2,4,5-Tetrachlorobenzene	ug/l	-	ND (0.37)
1,2,4-Trichlorobenzene 2.3.7.8-TCDD	ug/l	9	ND (0.26)
2,3,7,8-TCDD	ug/l	0.00001	ND (5.1)
MS Semi-volatile TIC			
Total TIC, Semi-Volatile	ug/l	-	13.3 J
GC/LC Semi-volatiles (EPA 608.3)			
			ND (0.0555)
Aldrin	ug/l	0.04	ND (0.0037)
alpha-BHC	ug/l	0.02	ND (0.0059)
beta-BHC delta-BHC	ug/l ug/l	0.04	ND (0.0066) ND (0.0056)
gamma-BHC (Lindane)	ug/l	0.03	ND (0.0036)
Chlordane	ug/l	0.05	ND (0.0047)
Dieldrin	ug/l	0.03	ND (0.0032)
4,4'-DDD	ug/l	0.1	0.0088 J
4,4'-DDE	ug/l	0.1	0.0038 J °
4,4'-DDT	ug/l	0.1	0.0099 J ^a
Endrin Endosulfan sulfate	ug/l	40	ND (0.0047) ND (0.0048)
Endrin aldehyde	ug/l ug/l	-	ND (0.0048) ND (0.0064)
Endosulfan-I	ug/l	40	0.0066 J
Endosulfan-II	ug/l	40	ND (0.0044)
Heptachlor	ug/l	0.05	ND (0.0044)
Heptachlor epoxide	ug/l	0.2	ND (0.0033)
Methoxychlor	ug/l	40	ND (0.0060)
Toxaphene Aroclor 1016	ug/l ug/l	2 0.5	ND (0.079) ND (0.13)
Aroclor 1221	ug/l	0.5	ND (0.13)
Aroclor 1232	ug/l	0.5	ND (0.11)
Aroclor 1242	ug/l	0.5	ND (0.15)
Aroclor 1248	ug/l	0.5	ND (0.076)
Aroclor 1254	ug/l	0.5	ND (0.11)
Aroclor 1260	ug/l	0.5	ND (0.11)
GC/LC Semi-volatiles (SW846 8081	IB)		
Mirex	ug/l	0.1	ND (0.0023)
GC/LC Semi-volatiles (SW846 8141	IB)		
Chlorpyrifos	ug/l	20	ND (0.66)
Demeton	ug/l	1	ND (0.91)
Ethyl Parathion	ug/l	4	ND (0.64)
Malathion	ug/l	100	ND (0.49)
Methyl Azinphos (Guthion)	ug/l	-	ND (0.44) ^c
Metals Analysis			
Antimony	ug/l	6	<6.0
Arsenic	ug/l	3	11.3
Beryllium	ug/l	1	<1.0
Cadmium	ug/l	4	<3.0
Chromium	ug/l	70	<10
Copper Lead	ug/l ug/l	1300 5	12.6 <3.0
Mercury	ug/l	2	<0.20
Nickel	ug/l	100	54.4
Selenium	ug/l	40	<10
Silver	ug/l	40	<10
Thallium	ug/l	2	<0.50
Zinc	ug/l	2000	57.3
General Chemistry			
General Chemistry			
Chloride	mg/l	250	12.5
Cyanide	mg/l	0.1	0.024
Nitrogen, Ammonia	mg/l	3	2.9
Phenols	mg/l	-	<0.20

- Footnotes:

 ^a This compound in blank spike duplicate is outside in house QC limits bias high.

 ^b This compound in BS,BSD is outside in house QC limits bias low.

 ^c Associated CCV outside of control limits high, sample was ND.

 ^d More than 40 % RPD for detected concentrations between the two GC columns.

No. 1 Landfarm September 2021 - Soil

Hess Corporation - Former Port Reading Complex 750 Cliff Road

Port Reading, Middlesex County, New Jersey

Client Sample ID:		NJ Soil Remediation Standards	NJ Soil Remediation Standards	NJ Soil Remediation Standards	NJ Soil Remediation Standards	ZOI(0.0-1.5')	TZ(1.5-3.0')	UZ(3.0-4.0')
Lab Sample ID:		Ingestion Dermal	Ingestion Dermal	InhalationI Exp.	InhalationI Exp.	JD31718-1	JD31718-2	JD31718-3
Date Sampled:		Exp. Pathway	Exp. Pathway	Pathway	Pathway Non-	9/16/2021	9/16/2021	9/16/2021
Matrix:		Residential	Non-Residential	Residential	Residential	Soil	Soil	Soil
		•	•		•			
MS Volatiles (SW846 8260D)								
Benzene	mg/kg	3	16	2.2	11	ND (0.00086)	ND (0.00061)	0.00077
2-Butanone (MEK)	mg/kg	47000	780000	-	-	ND (0.0046)	ND (0.0032)	0.0107 J
Carbon disulfide	mg/kg	-	-	-	-	ND (0.0010)	ND (0.00072)	0.00079 J
Chlorobenzene	mg/kg	510	8400	-	-	ND (0.00087)	ND (0.00061)	ND (0.00057)
Chloroform	mg/kg	780	13000	590		ND (0.00098)	ND (0.00069)	ND (0.00065)
1,2-Dibromoethane	mg/kg	0.35	1.8	0.085	0.41	ND (0.00080)	ND (0.00056)	ND (0.00052)
1,2-Dichloroethane	mg/kg	5.8	30	71	320	ND (0.00089)	ND (0.00063)	ND (0.00058)
1,4-Dioxane	mg/kg	7	36	45	210	ND (0.069)	ND (0.049)	ND (0.045)
Ethylbenzene	mg/kg	7800	130000	10	48	ND (0.00086)	ND (0.00061)	0.00093 J
Methyl Tert Butyl Ether	mg/kg	780	13000	140	650	ND (0.00089)	ND (0.00063)	0.0056
Styrene	mg/kg	16000	260000	-	-	ND (0.00076)	ND (0.00054)	ND (0.00050)
Tert Butyl Alcohol	mg/kg	1400	23000	-	-	ND (0.0086)	ND (0.0061)	ND (0.0057)
Toluene Vinul obleride	mg/kg	6300 0.97	100000	1.4	6.4	ND (0.00099)	ND (0.00070)	0.0011 J
Vinyl chloride	mg/kg	12000	5 190000			ND (0.00091)	ND (0.00064)	ND (0.00060)
Xylene (total)	mg/kg	12000	190000	-	-	ND (0.00087)	ND (0.00061)	0.0031
MS Semi-volatiles (SW846 8270E	١							
ino dellii-voiatiles (Svvo46 82/0E	,							
Benzenethiol	mg/kg		_	-	-	0.706 J ^a	0.679 J ^a	0.267 J ^b
2,4-Dimethylphenol	mg/kg	1300	18000	-	-	ND (0.17)	ND (0.14)	ND (0.16)
2,4-Dinitrophenol	mg/kg	1300	1800	-		ND (0.17)	ND (0.14)	ND (0.16)
2-Methylphenol	mg/kg	320	4600	-	-	ND (0.061)	ND (0.051)	ND (0.059)
3&4-Methylphenol	mg/kg	-		-	-	ND (0.001)	ND (0.066)	ND (0.039)
4-Nitrophenol	mg/kg	_	_	_	-	ND (0.26)	ND (0.21)	ND (0.24)
Phenol	mg/kg	19000	270000	39000	-	ND (0.050)	ND (0.042)	ND (0.048)
Anthracene	mg/kg	18000	250000	-	-	0.42	0.528	0.422
Benzo(a)anthracene	mg/kg	5.1	23	78000	370000	0.233	0.397	0.528
Benzo(a)pyrene	mg/kg	0.51	2.3	7800	16000	0.411	1.01	0.792
Benzo(b)fluoranthene	mg/kg	5.1	23	78000	370000	0.258	0.67	0.52
Benzo(k)fluoranthene	mg/kg	51	230	780000	-	ND (0.045)	ND (0.037)	0.139
Butyl benzyl phthalate	mg/kg	290	1300	-	-	ND (0.023) °	ND (0.019) °	ND (0.022) °
Chrysene	mg/kg	510	2300		-	0.433	1.83	1.25
1,2-Dichlorobenzene	mg/kg	6700	110000		-	ND (0.028)	ND (0.023)	ND (0.026)
1,3-Dichlorobenzene	mg/kg	6700	110000	-	-	ND (0.020)	ND (0.017)	ND (0.020)
1,4-Dichlorobenzene	mg/kg	780	13000	-	-	ND (0.023)	ND (0.019)	ND (0.022)
7,12-Dimethylbenz(a)anthracene	mg/kg	-	-	-	-	ND (0.025)	ND (0.020)	ND (0.023)
Dibenz(a,h)acridine	mg/kg	-	-	-	-	ND (0.48)	ND (0.40)	ND (0.46)
Dibenzo(a,h)anthracene	mg/kg	0.51	2.3	7800	37000	0.181	0.428	0.296
Di-n-butyl phthalate	mg/kg	6300	91000	-	-	ND (0.016)	ND (0.013)	ND (0.015)
Di-n-octyl phthalate	mg/kg	630	9100	-	-	ND (0.024) ^c	ND (0.020) ^c	ND (0.023) °
Diethyl phthalate	mg/kg	51000	730000	-	-	ND (0.020)	ND (0.017)	ND (0.020)
Dimethyl phthalate	mg/kg	-		-	-	ND (0.017)	ND (0.014)	ND (0.016)
bis(2-Ethylhexyl)phthalate	mg/kg	39	180	-	-	ND (0.022) °	0.394 ^d	0.353 °
Fluoranthene	mg/kg	2400	33000	-	-	0.123	0.216	0.417
Indene	mg/kg	-	-	-	-	0.221 J	0.335 J	0.174 J
1-Methylnaphthalene	mg/kg	-	-	-	-	0.515 0.330 J	0.507	0.556
6-Methyl Chrysene Naphthalene	mg/kg	2500	34000	- 5.7	27	0.330 3	1.08 0.327	0.715 0.247
Phenanthrene	mg/kg mg/kg	2300	34000			0.633	0.809	1.11
Pyrene	mg/kg mg/kg	1800	25000	-	-	0.633	1.08	1.57
Pyridine	mg/kg	-	-	-	-	ND (0.033)	ND (0.027)	ND (0.031)
Quinoline	mg/kg	-	_	-		ND (0.033)	ND (0.027)	ND (0.031)
Q	inging	-	-		-	145 (0.010)	110 (0.017)	145 (0.010)
Metals Analysis								
Antimony	mg/kg	31	520	-	-	<3.1	<2.6	<1.9
Arsenic	mg/kg	19	19	1100	5200	46.5	33.6 ^e	23.0 °
Barium	mg/kg	16000	260000	870000	-	213	144	97.1
Beryllium	mg/kg	160	2600	2000	9300	0.74	1.8 ^e	0.54 ^e
Cadmium	mg/kg	71	1100	2600	12000	0.94	1.3 °	<0.93 ^e
Chromium	mg/kg	-	-	-	-	92.3	81.2	62.6
Cobalt	mg/kg	23	390	520	2500	14.8	13.1	8.7
Lead	mg/kg	400	800	-	-	155	162 ^e	97.1 ^e
Mercury	mg/kg	23	390	520000	-	2	0.5	0.77
Nickel	mg/kg	1600	26000	20000	93000	1510	655	370
Selenium	mg/kg	390	6500	-	-	14.5	7.8 ^e	4.2 ^e
Vanadium	mg/kg	390	6500	170000	800000	102	66.6	45.5
General Chemistry								
-		-						
						<740	*C2O	<700
HEM Oil and Grease	mg/kg	-	-	-	-		<630	
Nitrogen, Nitrate + Nitrite	mg/kg	-	-	-	-	<29	26.8	<27
Nitrogen, Nitrate + Nitrite Nitrogen, Total	mg/kg mg/kg	-	-	-	-	<29 9460 [†]	26.8 5330 [†]	<27 2720 [†]
Nitrogen, Nitrate + Nitrite Nitrogen, Total Nitrogen, Total Kjeldahl	mg/kg mg/kg mg/kg	-	-	- -	-	<29 9460 [†] 9430	26.8 5330 [†] 5300	<27 2720 [†] 2720
Nitrogen, Nitrate + Nitrite Nitrogen, Total	mg/kg mg/kg	-	-	-	-	<29 9460 [†]	26.8 5330 [†]	<27 2720 [†]

Footnotes:

- This compound in BS is outside of advisory limits.
 This compound in BS is outside of advisory limits.
 This compound in BS is outside of advisory limits.
 Associated CCV outside of control limits high, sample was ND.
 Associated CCV outside of control limits high. Estimated value, due to corresponding failure in the batch associated CCV.
 Elevated detection limit due to dilution required for high interfering element.
 Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

APPENDIX A

Low Flow Pump Placement Summary Table Hess Corporation - Former Port Reading Complex 750 Cliff Road Port Reading, New Jersey

Well ID	AOC	TOC Elevation (ft)	Ground Elevation (ft)	Survey Date	Diameter (in)	Screen Interval (TOC, ft)	Stick-Up Height (TOC - Ground Elev., ft)	Depth of Well (bgs, ft)	Depth of Well (TOC, ft)	July Pump Depth (below TOC)	July DTW (before pump placement) from TOC	Oct Pump Depth (below TOC)	Oct DTW (before pump placement) from TOC
BG-2	3	6.96	7.16	12/21/2017	4	4-9	Flush Mount	9	9.00	5.5	1.67	5	2.59
BG-3	3	10.31	7.7	12/9/2014	4	7-12	2.61	10	12.00	8.5	2.71	9	4.62
L1-1	3	9.91	10.14	12/21/2017	4	4.25-14.25	Flush Mount	14.25	14.25	7	3.39	7	4.83
L1-2	3	9.05	7.63	12/9/2014	4	5.5-15.5	1.42	14	15.50	8	5.62	8	6.17
L1-3	3	9.33	8.31	12/9/2014	4	6.4-11.4	1.02	10.4	11.40	8	5.97	8.5	6.52
L1-4	3	10.85	9.07	12/9/2014	4	6-11	1.78	9	11.00	9	6.85	9.5	7.96
LN-1	1	10.37	8.51	5/6/2019	4	8-14.85	1.86	14.85	14.85	10	4.04	10	5.23
LN-2	1	9.65	8.88	5/6/2019	4	7.75-13.75	0.77	13	13.75	8.5	5.2	8.5	5.94
LN-3	1	8.92	8.6	5/6/2019	4	5.75-11.75	0.32	11.25	11.75	7.5	4.85	8	5.36
LN-4	1	10.69	9.13	5/6/2019	4	5.5-15.5	1.56	14	15.50	9.6	6.94	9.5	7.39
LN-5	1	10.57	8.4	5/6/2019	4	7-17	2.17	15	17.00	7.5	6.12	9.5	6.81
LN-6	1	12.15	8.93	5/6/2019	4	8-18	3.22	15	18.00	10.5	7.97	10.5	8.44
LN-7	1	13.30	10.12	5/6/2019	4	8-18	3.18	15	18.00	10.5	8.23	10.5	9.07
LS-1R	2	12.25	10.42	12/9/2014	4	6-16	1.75	14	16.00	7	2.69	9	3.43
LS-2	2	9.75	8.12	12/9/2014	4	7.25-12.25	1.75	10.25	12.25	8	1.93	8	2.84
LS-3	2	8.40	8.01	12/9/2014	4	6.5-12.5	0.39	12	12.50	7.5	0.1	7.5	1.04
LS-4	2	9.28	7.70	12/9/2014	4	7-14	1.58	12	14	8	1.32	9	1.83

NJDEP Certification No. 13040

/ O)	Date: / (7)	Job #/Name Port Rora - North 850 Clares	Personnel:	7c
Equipment:		Serial Number: 04 89 3		

				Н			
Temperature	Zero Pt (pH 4)	3/3//23	Span Pt (pH 10)	3/3//23	Initial Check (must be within +/- 0.1 units or need to recalibrate)	3/21/27	
-	Initial Reading	Adjusted	Initial Reading	Adjusted	(pH 7 - acceptable range 6.9-7.1)	Recalibrate (Y/N)*	
25.67	47	400	287	(0,00	1.00	N	
	pl	l 3 Hour Check (*2-poin	t calibration only nee	ds to be conducted if check value	is out of range)		
	Zero Pt * (pH 4)	Lot / Exp Date	Span Pt * (pH 10)	Lot / Exp Date		Lot / Exp Date	
711	1777				(pH 7 - acceptable range 6.8-7.2)	7	
11.00	4.10	400	1900	1.00	70	1	
	Temperature Temperature	Temperature (pH 4) Initial Reading pH Zero Pt * (pH 4) Temperature	Temperature (pH 4) 3/3/23 Initial Reading Adjusted C O PH 3 Hour Check (*2-point Zero Pt * Lot / Exp Date (pH 4) Temperature	Zero Pt Lot / Exp Date Span Pt (pH 4)	Temperature (pH 4) 2/2//23 (pH 10) Initial Reading Adjusted Initial Reading Adjusted PH 3 Hour Check (*2-point calibration only needs to be conducted if check value Zero Pt * Lot / Exp Date (pH 4) Temperature (pH 4) (pH 10)	Zero Pt Lot / Exp Date Span Pt Lot / Exp Date Initial Check (must be within +/- 0.1 units or need to recalibrate) Initial Reading Adjusted Initial Reading Adjusted (pH 7 - acceptable range 6.9-7.1) PH 3 Hour Check (*2-point calibration only needs to be conducted if check value is out of range) Zero Pt * Lot / Exp Date Span Pt * Lot / Exp Date Check (must be within +/-0.2 units or need to recalibrate) Temperature (pH 4) (pH 10) (pH 7 - acceptable range 6.8-7.2)	

				Conductivity		
Time	Zero (Amblent Air)	Lot / Exp Date	Span (1.413 ms/cm)	Lot / Exp Date	Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date
					(use 1.413 ms/cm - acceptable range 1.398 - 1.427)	
1-12	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
100	0.00%	0500	(30)	671	[4]	N

				Turbidity		
Tlme	Zero	Lot / Exp Date Spar		Lot / Exp Date	Check - must be within +/- 10% or need to recalibrate	Lot / Exp Date
,,,,,	Table 0				(use 100 NTU - acceptable range 90- 110 NTU)	
7 4	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
110	0.0	0 ()	774	196	108	1/

			Dissolved Oxy	gen	
Time	Zero	Lot / Exp Date	Air Span	Lot / Exp Date	Check - reading must be 0.3mg/L o
	(0% Solution)		(100%)		(0% Solution)
	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value
13/	0	0	97.9		01

		Earth Systems		
		NIDEP Certification No. 13040		
Equipment:	G 7'L	Date: 7/13/1 Job #/Name: Port-Rosin - No. 1 Weather: 50720 Personnel: 7 = Serial Number: 79468	* Santa	42

					H		
Time	Temperature	Zero Pt (pH 4)	3/31/48	Span Pt (pH 10)	3/31/d3	Initial Check (must be within +/- 0.1 units or need to recalibrate) (pH 7 - acceptable range 6.9-7.1)	Lot / Exp Date
	0	Initia Reading	Adjusted	Initial Reading	Adjusted		Recalibrate (Y/N)
100	209	7.01	4.00	13.78	(~.00	7,00	122
		p	H 3 Hour Check (*2-poi	nt calibration only nee	ds to be conducted if check value	is out of range)	
rime (3 hr check)	Temperature	Zero Pt * (pH 4)	Lot / Exp Date	Span Pt * (pH 10)	Lot / Exp Date	Check (must be within +/-0.2 units or need to recalibrate) (pH 7 - acceptable range 6.8-7.2)	Lot / Exp Date
010	25.00	100	7,00	10.64	12.00	700	N

				Conductivity			
Time	Zero (Ambient Air)	331, 319, 341		Lot / Exp Date	Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date	
Time					(use 1.413 ms/cm - acceptable range 1.398 - 1.427)		
	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	
10	0,00	0.000	1.64	1.71	1.71	1/	

				Turbidity		
Time	Zero	Lot / Exp Date	Span (100 NTU)	Lot / Exp Date	Check - must be within +/- 10% or need to recalibrate	Lot / Exp Date
	Initial Reading	Adjusted	Table Conde	. 11	(use 100 NTU - acceptable range 90 110 NTU)	
71.4		Aujusteu	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
1-	0,0	0.0	989	100	120.	1/

		Dissolved Oxy	jen		
Zero	Lot / Exp Date	Air Span Lot / Exp Date		Check - reading must be 0.3mg/L less	
(0% Solution)		(100%)		(0% Solution)	
Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value	
0	0	(0)	N	01	
	(0% Solution)	Zero (0% Solution)	Zero Lot / Exp Date Air Span (0% Solution) (100%) Initial Reading Adjusted Check Value	Zero Air Span (0% Solution) (100%) Initial Reading Adjusted Check Value Recalibrate (Y/N)	

NJDEP Certification No. 13040

Equipment: V-52 Date: 7/13/21 Job #/Name: No. 15 Weather: Chw/ 70 Personnel: CC

				pH		
Temperature	Zero Pt (pH 4)	Lot / Exp Date 16 C 7 6 8 3 / 3 1 (2 3	Span Pt (pH 10)	16C436 3131/23	Initial Check (must be within +/- 0.1 units or need to recalibrate) (pH 7 - acceptable range 6.9-7.1)	Lot / Exp Date 16C 089 3/31/23
	Initial Reading	Adjusted	Initial Reading	Adjusted	" ' '	Recalibrate (Y/N)
	412	400	10.02	00.00	7.01	N
	р	H 3 Hour Check (*2-poir	at calibration only ne	eds to be conducted if check value	is out of range)	
	Zero Pt * (pH 4)	Lot / Exp Date	Span Pt * (pH 10)	Lot / Exp Date	Check (must be within +/-0.2 units or need to recalibrate)	Lot / Exp Date
Temperature					(pH 7 - acceptable range 6.8-7.2)	
		Temperature (pH 4) Initial Reading 4./2 p Zero Pt * (pH 4)	Temperature (pH 4)	Temperature (pH 4) Lot / Exp Date (pH 10) Initial Reading Adjusted Initial Reading 4./2 400 / 0.02 pH 3 Hour Check (*2-point calibration only new Span Pt * (pH 4) (pH 4) (pH 10)	Temperature (pH 4) 16C758 (pH 10) 3/31/23 Initial Reading Adjusted Initial Reading Adjusted 4.72 400 (0.02 /0.00	Temperature (pH 4) (pH 10) Initial Reading Adjusted (pH 10) Initial Reading Adjusted PH 3 Hour Check (*2-point calibration only needs to be conducted if check value is out of range) Zero Pt (pH 4) (pH 7 - acceptable range 6.9-7.1) PH 3 Hour Check (*2-point calibration only needs to be conducted if check value is out of range) Zero Pt * Lot / Exp Date (pH 4) (pH 10) Check (must be within +/-0.2 units or need to recalibrate) (pH 4) (pH 10)

				Conductivity		
	Zero (Ambient Air)	1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,		Lot / Exp Date	Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date
Time			(1.413 113/6117)	3/31/22	(use 1.413 ms/cm - acceptable range 1.398 - 1.427)	
	Initia Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
836	0.000	0.000	1.14	1.71	191	N
			1			

			Turbidity			
Zero	333, 34 3333		Lot / Exp Date	Check - must be within +/- 10% or need to recalibrate	Lot / Exp Date	
				(use 100 NTU - acceptable range 90-		
Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	
0.0	0.0	10	100	101	2	
	Initial Reading	Initial Reading Adjusted	(100 NTU) Initial Reading Adjusted Initial Reading	Zero Lot / Exp Date Span Lot / Exp Date (100 NTU) Initial Reading Adjusted Initial Reading Adjusted	Zero Lot / Exp Date Span Lot / Exp Date Check - must be within +/- 10% or need to recalibrate (100 NTU) (use 100 NTU - acceptable range 90- 110 NTU) Initial Reading Adjusted Check Value	

			Dissolved Oxy	gen		
-	Zero	Lot / Exp Date H28/21	128/21 Air Span		Check - reading must be 0.3mg/L less	
Time	(0% Solution)	2019080750	(100%)		(0% Solution)	
	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value	
896	0.000	0,000	9/6	N		

NJDEP Certification No. 13040

/ C)	Date: / (7/2)	Job #/Name Port Road - Weather: _ Weather: _ Personnel:	Ac
Equipment:		Serial Number: 04893	

Zero Pi ature (pH 4) Initial Reac	3/31/23 Iling Adjusted	Span Pt (pH 10) Initial Reading	Adjusted	(pH 7 - acceptable range 6.9-7.1)	Lot / Exp Date 3/3//23 Recalibrate (Y/N)*
(pH 4)	ling Adjusted	Initial Reading	Adjusted (O, wo	(pH 7 - acceptable range 6.9-7.1)	Recalibrate (Y/N)*
Initial Read	400	287	(0,00	1.00	
7 1 4 1/4		2.57			N
	pH 3 Hour Check (*2-poi				
		nt canbration only nee	ds to be conducted if check value	is out of range)	
Zero Pt	* Lot / Exp Date	Span Pt *	Lot / Exp Date	Check (must be within +/-0.2 units	Lot / Exp Date
(pH 4)		(nH 10)		or need to recalibrate)	
ature		(611 20)		(pH 7 - acceptable range 6.8-7.2)	
4,10	400	1900	1.00	700	1
•	sture	12.77	sture	eture	(pH 4) (pH 10) (pH 7 - acceptable range 6.8-7.2)

				Conductivity		
Time	Zero (Amblent Air)	Lot / Exp Date	Lot / Exp Date Span (1.413 ms/cm)		Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date
Time					(use 1.413 ms/cm - acceptable range 1.398 - 1.427)	
7-12	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
10	0.007	0000	1.50	6-61	491	N

				Turbidity		
Time	Zero	Lot / Exp Date	Span (100 NTU)	Lot / Exp Date	Check - must be within +/- 10% or need to recalibrate	Lot / Exp Date
					(use 100 NTU - acceptable range 90- 110 NTU)	
247	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
110	0.0	00	774	100	10%	17

			Dissolved Oxy	gen		
Time	Zero	Lot / Exp Date	ot / Exp Date Lot / Exp Date		Check - reading must be 0.3mg/L o	
	(0% Solution)		(100%)		(0% Solution)	
	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value	
31	0	0	97.9	1	12.1	

NJDEP Certification No. 13040

Date: 7/14/21 Job #/Name: N. LF Weather: Cloud 76 Personnel: RC

Equipment: U-52 Serial Number: 44182 / 044013

					pH		
	Temperature	Zero Pt	Lot / Exp Date	Span Pt	Lot / Exp Date	Initial Check (must be within +/- 0.1 units or need to recalibrate)	Lot / Exp Date
Time		(pH 4)	3/31/23	(pH 10)	3/31/23	(pH 7 - acceptable range 6.9-7.1)	3/31/23
		Initial Reading	Adjusted	Initial Reading	Adjusted		Recalibrate (Y,N)
745	23.44	4.63	4.0	10.10	10.00	O 6. F	N
		pl	1 3 Hour Check (*2-poir	rt calibration only nee	eds to be conducted if check value	is out of range)	
Time (3 hr		Zero Pt * (pH 4)	Lot / Exp Date	Span Pt * (pH 10)	Lot / Exp Date	Check (must be within +/-0.2 units or need to recalibrate)	Lot / Exp Date
check)	Temperature					(pH 7 - acceptable range 6.8-7.2)	
250						7.04	2/

			Conductivity		
Zero (Ambient Air)	Lot / Exp Date	Span (1.413 ms/cm)	Lot / Exp Date	Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date
	****		3/11/22	(use 1.413 ms/cm - acceptable range 1.398 - 1.427)	
Initial Reading	Adjusted	Initia Reading	Adjusted	Check Value	Recalibrate (Y/N)
0.001	0.000	23	141	1.41	~
	(Ambient Air)	(Ambient Air) Initial Reading Adjusted	(Ambient Air) (1.413 ms/cm) Initial Reading Adjusted Initial Reading	Zero Lot / Exp Date Span Lot / Exp Date (Ambient Air) (1.413 ms/cm) 1661634 Initial Reading Adjusted Initial Reading Adjusted	Zero Lot / Exp Date Span Lot / Exp Date Check (must be within +/-1% or need to recalibrate) (1.413 ms/cm) 166157 (use 1.413 ms/cm - acceptable range 1.398 - 1.427) Initial Reading Adjusted Initial Reading Adjusted Check Value

				Turbidity		
Tîme	Zero	Lot / Exp Date	Span (100 NTU)	Lot / Exp Date	Check - must be within +/- 10% or need to recalibrate	Lot / Exp Date
THIC	Initial Day				(use 100 NTU - acceptable range 90- 110 NTU)	
	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
y05	6.0	0.0	157	100		

		Dissolved Oxy	gen	
Zero	Lot / Exp Date 7[28/1]	Air Span	Lot / Exp Date	Check - reading must be 0.3mg/L o
	2419080750	(100%)		(0% Solution)
Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value
0.06.0	(100)	((50-)	لم	
	(0% Solution) Initial Reading	(0% Solution) Initial Reading Adjusted	Zero Lot / Exp Date Air Span (0% Solution) 1917 750 (100%) Initial Reading Adjusted Check Value	(0% Solution) Initial Reading Adjusted Check Value Recalibrate (Y/N)

SHEET _ OF 1

SITE:			Form	er Hess	- Port Re	eading		co	NSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			, 0,,,,	7/15/		odding			ELD PERSO	-	Ki		1016110			
WEATHER			54	mny.					ERTIFICATI	ON #:	171	130	40			
MONITOR WELL PER				LS - 1R 26000253	324	WELL DE		Inches			SCRE	ENED/OPEN	INTERVAL:	-	6 - 16'	
PID/FID RE	ADIN	iGS	(ppm):		JND: DUTER CAP: INNER CAP:	O. 02. ~	7			DEPTH:			69 ft belo	w TOC		
TIME	A MA		Hq)	units)	1	PECIFIC 3/o		EDOX FENTIAL (my)	0)	SOLVED 10%	{N	TU) 1010	(degre	RATURE ()	PUMPING RATE	DEPTH TO WATER
	5	SA	READING	CHANGE.	READING	CHANGE'	READING	CHANGE'	(mg/l) (SM 4500OG) E' READING CHANGE'			CHANGE*	(SM 2	CHANGE.	(ml/min)	(ft below TOC)
1035	'ye'		7:31	NA	,428	NA	-80	NA	1.31	NA	6.5	NA	31.65	NA	273	3.05
1090	у		7.23	508	-392	-8.470	-87	7	1.41	6.6%	7.7	9,23/0	31.17	1.500 10	775	3.14
1045	>		7.21	03	.363	7.39	-97	10	0.69	-54.6	8.2	15.49	30.36	2.59	275	3.40
1050	>		7.21	0.0	-356	-1,92810	-100	3	0.48		9,4	14.63	30.32	132		3.42
1055	>		7.21	6.0	,352	-1.12	-104	4	.51	6.25	8.6	-8.5	30.62		275	3.43
1100	×		7.21	0.0	.350	-0.56	-105	1	.47	7.84	7.8	-9.3	30.78	.52	275	3.45
1105	7	Ш	7.20	-0.01	-347	-0.85	-105	0	.43	- 8.511	7.9	1.28	30.94	250	275	3.45
Bib.	L	>	7.20	-0.01	.347		-107	-	.43	~	7.8	1.27	30.50	152	215	3.45
	\perp	Ц														
	\downarrow															
	\perp															
COMMEN	rs:	5	angle	0	1140											

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:			Form	ner Hess	- Port Re	eading		cc	NSULTING	FIRM		EARTH S	YSTEMS			
DATE:			7/15/	21	. 01(1(Juding			ELD PERSO			40				
WEATHER			88	JAAA	2				ERTIFICATI	ION #:		130	040			
MONITOR WELL PER				LS - 2 26000075	93	WELL DE	7 Aug - &c	#			SCRE	ENED/OPEN	INTERVAL:		7. <u>2</u> 5-12 <u>.2</u>	5'
PID/FID RE	PID/FID READINGS (ppm): BACKGROUND: 0.0 BENEATH OUTER CAP: BENEATH INNER CAP: 9 9H SPECIFIC RE (pH units) CONDUCTIVITY POTI									DEPTH:&		i	ff helo	w TOC		
TIME	TIME ON BEAUTING (SM 45)				DUCTIVITY	PO	EDOX TENTIAL (mv)	0)	SOLVED (YGEN	(N	TU)	TEMPES (degree	ees C)	PUMPING RATE	DEPTH TO WATER	
	2	SAI		CHANGE.	READING	CHANGE!	READING	CHANGE'	(mg/i)	(SM 4500OG)	READING	180.1)	(SM :	CHANGE*	(ml/min)	(ft below TOC)
805	X		766	NA.	0341	NA	45	NA	343	NA	13.2	NA	2231	NA	318	198
80	×		7.63	0.03	0543	0.34	-13	-58	0.18	1004	17.3	54	12:18	07%	1	1
8.15	X		7.62	0,01	0.551	1.4.	~36	-23	0.1	0 <	12.3	17%	22.99	2.21		
830	K		7.63	0.01	0.550	<i>(.</i>	-40	-9	air	0-1	11.4	19,	23.16	0.74		
9.92	V		7.63	0.00	0.55%	14	-44	-4	Q.Y	0 4	6.8	3%	1338	14		
130	X	1	7.67	0.00	0008	1%	-47	2	018	0 %	13.5	5-1,	23.58	17		
2.55	X		163	0.00	0.568	1.7%	-46	4	0.18	0 %	134	(1.	1374	14		
8,40	ŀ	X763 000 0584 2 8mx 548 -				-7	0.18	0 %	13.0	2.9%	17.87	14				
COMMENT	S:															

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

[&]quot;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

SHEET OF

SITE:		Forr	ner Hess	- Port R	eading		co	NSULTING	FIRM:		EARTH S	SYSTEMS			
DATE:		2/15	111		odding		FII	ELD PERSO	NNEL:		Al				
WEATHER		Sport	Sant					ERTIFICAT				040			
MONITOR WELL PER		¥:	LS - 3 2600007	92	WELL DE		2.5' " Inches			SCRI	EENED/OPEN	I INTERVAL:		6.5 - 12.5'	
PID/FID RE	ADING	S (ppm):		JND: DUTER CAP: INNER CAP:		0			ER BEFORE P			/ It below	w TOC		
TIME	PURGING	(pHq)	pH units) 500H+8)	CON	PECIFIC DUCTIVITY		REDOX OTENTIAL	03	SOLVED (YGEN	(N	BIDITY ITU)	TEMPER	es C)	PUMPING RATE	DEPTH TO WATER
	PUN	READING	CHANGE*	(mS/cm	(EPA 120.1)	READING	(mv)	(mg/l) READING	(SM 4500OG)	READING	(180.1)	(SM 2	CHANGE	(ml/min)	(ft below TOC)
9:55	TO READING CHANGE RI			987	NA	15	NA	0.10	NA	37	NA	2100	NA	378	0.18
60	X	645	000	9.91	0.47.	17	4	00	0 ×	29	217-	2175	0.77		
(1.05	X	6,65	020	590	1-2	9	2	0.10	0 4	3.7	27-	21.97	1%		
10.0	X	C.C.C.	0.01	9.89	1.1,	7	2	0,0	6 %	7,4	8 Y.	21.64	1%		
10,13	X	6.66	0.00	782	1.7	6	1	00	0 1/2	3.3	1/2	12.23	100		
15,30	X	4.67	0.01	9.76	100	5	1	0.10	6 %	3.3	04	42.37	17.		
100	3	(6.67	0.80	4.70	13	3	3	010	0%	3.0	9-1	21.91	1%	+	1
	\vdash						-	-							
COMMENT] S:														

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET _ OF

SITE:		For	mer Hes	s - Port R	eading		C	ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			5/21		o de a maria			ELD PERSO		14,					
WEATHER		Syn	-				(CERTIFICAT	10N #:	7-3/	130	140			
MONITOR WELL PER		_	LS - 4 2600007	595	WELL DE		Inches			SCRE	ENED/OPEN	INTERVAL:		7 - 14'	
PID/FID RE	ADIN	3S (ppm):		OUND: OUTER CAP: INNER CAP:	3. 6 6. 4	9			DEPTM: 8	UMP INSTAL	LATION : /		w TOC		
TIME	(SM 4500H+B) (mS/cm)			PECIFIC 3 POUCTIVITY	1	TENTIAL	1	SOLVED O		TU)		RATURE (PUMPING RATE	DEPTH TO WATER	
	TEXAMO OTAL		(SM 4500OG)	READING	180.1)	(SM:	CHANGE'	(ml/min)	(ft below TOC)						
920	У	7.34	NA	7.79	NA	-99	NA	3.09	NA	5.5	NA	23.61	NA	300	1.73
925	>	7.37	,03	2.29	0	-106	7	2.55	-17.47	6.8	Z3.67	24.01	1.69%	300	1.02
930)	7.38	07	2.31	-8710	-111	5	2.05	-19.60	8.5	25 /2	24.25	10	300	1.85
935	>	7.40	.07	2.33	-86 10	-115	4	1.54	-24.88	10.2	2010	24.44	.78	300	1.85
940	1	7,40	0.0	5.31	-86	-116	/	1,52	-/229	9.4	-7.84	24.52	,52	300	1.5%
945	>	7.41	0.1	2.30	- 043	-117	/	1.41	-7.80	10.0	6.38	24.67	-61	300	1.87
950	>	7.40	-0.1	2.29	43	-117	0	1.29	-8.5	10.8	810	24.90	. 93	300	1.87
955		7.40	-0.1	रे . १ व		-117		1.25	*	10.8	75	24.59	10	30	1.87
	\sqcup	-													
	+	-		1											
COMMEN															
COMMEN	4	myske	0	755											

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET __ OF ____

SITE:	Former Hess - Port Reading						co	NSULTING	FIRM:		EARTH S	YSTEMS				
DATE:	-			7/14/		5.59		FII	ELD PERSOI	NEL:		RC				
WEATHER:	-		C	رلاره)					ERTIFICATI	ON #:		130	40			
MONITOR WELL PER				LN - 1 260000813	60	WELL DE		1.85' Inches			SCRE	ENED/OPEN	INTERVAL:	_	8 - 14.85'	
PID/FID RE	BENEATH OUTER CAP: BENEATH INNER CAP: O. O BENEATH INNER CAP: O. O SPECIFIC									ER BEFORE P			ft belo	w TOC		
TIME	GING	OXYGEN (pH units) CONDUCTIVITY POTENTIAL OXYGEN			(N	TU)	TEMPER (degre	es C)	PUMPING RATE	DEPTH TO WATER						
	P. P.	SAM	(SM 45	CHANGE*	(mS/cm	(EPA 120.1)	READING	(mv)	(mg/l) READING	(SM 4500OG)	(EPA	180.1)	(SM 2	CHANGE	(ml/min)	(ft below TOC)
915	1		6.42	NA	1.54	NA	-11	NA	3.73	NA	60.1	NA	22.60	NA	280	4.4,
920	V		6.37	0.05	1.52	10%	-11	-	2.61	30 %	71.2	180%	22.61	10%	280	4.4,-
925	V		6.36	0.01	1.51	100	~10	1	1.46	440r	84.3	1840	22.63	10%	280	4.45
930	1		6.37	0-01	1.48	10%	-12	2	0.75	40%	80.9	40%	22.96	100	280	4.45
935	1		6.38	0.01	1.44	20/5	-13	a de la companya de l	0.75	_	76.2	506	22.87	10/3	280	4.45
940	ľ		6.39	6-01	1.40	240	-15	2	0.71	5%	70.9	60/2	22.96	10%	280	4.95
345	1		6.40	0-01	1.37	20%	ط)-	1	0.70	10%	68.9	2010	22.70	10/2	280	4.45
950		1	6.42	0.02	1.76	ion	-19	3	0.66	50%	67.1	2013	23.01	145	280	4.45
COMMEN.	rs:															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SITE:		Form	ner Hess	- Port Re	eading		-	CONSULTING	FIRM:		EARTH :	SYSTEMS			
DATE:			3/14/2	21	dPart -			FIELD PERSO	NNEL:		RC				
WEATHER:		Samuel.	SUN 8				Mic a piper in particular	CERTIFICAT	ION #:		13	D40			
MONITOR V			LN - 2 2600007	/562	WELL DIAM					SCRI	EENED/OPEI	INTERVAL:	7.75-	13.75'	
PID/FID RE/	FID READINGS (ppm): BACKGROUND: 0.0 BENEATH OUTER CAP: 0.0 BENEATH INNER CAP: 0.0 PM SPECIFIC								DEPTH: 8.5 TER BEFORE P			.ZO ft belov	w TOC		
TIME	PURGING	Hq)	pH units) 500H+B)		DUCTIVITY	H	REDOX TENTIAL (mv)	0	SOLVED XYGEN (SM 4509OG)	(8	BIDITY ITU) (180.1)	TEMPER (degree (SM 2	es C)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	PU	READING	CHANGE*	READING	CHANGE*	READING	CHANGE-	(mg/l)	CHANGE*	READING	CHANGE*		CHANGE'	(anneam)	(It below voo)
1300	1	697	NA	.455	NA	-39	NA	7.69	NA	34.6	NA	28.35	NA	400	5.39
1305	1	6.86	.11	.516	13%	-46	7	497	34%.	0.0	_	24.01	15%	400	5.39
13/0	V	6.87	.01	.536	37.	-52	6	3.62	39%	00		23.41	1%	400	5.39
13/5	1	6.88	.01	.565	5%	-59	7	1.60	471.	0.6		22.92	21	400	5.39
1320	1	6.89	.01	,566	.17.	-60	1	1.71	6%	8,0		19.55		400	5.39
1325	1	6.90	.01	568	.37	-61	1	1.86	5%	0.0		22.43	71	400	539
/330	1	6.92	. 02	.570	.3%	-62	1	1.76	27.	90		22.71		400	5.39
1335	1	6.93	01	.572	.3%	-69	7	1.70	3%	0.0		22.70			5.39
£207		<u>. </u>		1		_	•								
COMMENT	3:														

[&]quot;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: 2 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET . OF

Former Hess - Port Reading								NSULTING	FIRM:		EARTH S	SYSTEMS			
DATE:		7/17	17				FI	ELD PERSO	NNEL:		AR				
WEATHER		880	Synn	ウ			C	ERTIFICAT	ION #:		13	0 40			
MONITOR WELL PER			LN - 3 2600007	563	WELL DE		.75' " Inches			SCR	EENED/OPEN	I INTERVAL:	_	5.75 - 11.7	5'
PID/FID RE	ADIN	IGS (ppm):		UND: OUTER CAP: INNER CAP:	0.	ク	PUN	MP INTAKE	DEPTH: 7.5	ft below 1	COC C	183 It belo	w TOC		
TIME	PURGING	2	pH H units) (4500H+B)		PECIFIC DUCTIVITY) (EPA 120 1)	Pt	REDOX OTENTIAL (mv)	01	SOLVED (YGEN (SM 45000G)	(I	BIDITY ITU) (180 1)	(degr	RATURE ces C)	PUMPING RATE	DEPTH TO WATER
		READING	CHANGE*	READING	CHANGE.	READING	CHANGE.	(mg/l) READING	CHANGE*	READING	CHANGE*	(SM READING	CHANGE'	(ml/min)	(ft below TOC)
11,35	X	6.61	NA	00.00	NA	129	NA	9.10	NA	169	NA	21.37	NA	730	505
11:00	K,	660)	001	2.04	1 1	23	6	0.13	1007	-	15%	11+3	21.		1 1
11,05	X	6.62	0.00	12.68	1,9%	23	0	0.13	10%	1911	26	2167	1x		1
11.10	X	6.62	0.00	2.09	1.4	23	0	013	0 %	11,4	127	2129	17		
12:15	X	662	2.00	2.09	0.4	23	0	0.17	Ox.	19.7	10.00	2131	17		
12:20	X	66 3	001	2.07	1.,	21	2	013	01	179	17.	21.23	11	1	
17.25	X	6.4	0.01	205	1/71	21	0	013	0.4	14,9	00	2117	17.		1 1
12 34		X465	6.01	101	1 %	20	- 0	0.13	0%	147	0%	2100	17,		++-
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		4		0,1,5	- 71		0 10	1107	1 . 1		
				1											
COMMENT	3:														

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:		Forn	ar Hess	- Port R	oodina			Albid Trac	FIRM						
DATE:		7/14	/))	- FUILK	eading			NSULTING			EARTH S	YSTEMS			
WEATHER	-	50	3411	2 2				ELD PERSO ERTIFICAT			H 130	140			
	-	OB	77117					- CRITICAL			130				
MONITOR	WELL #		LN - 4		WELL DE	PTH: 16	5.5'			SCRI	ENED/OPEN	INTERVAL:		5.5 - 16.5	
WELL PER	MIT #:		260000813	31	WELL DIAME	TER: 4	Inches							0.0 10.0	
						- (077						
PID/FID RE	ADING	6 (ppm):	BACKGRO		\sim	3	PUN	IP INTAKE	DEPTH: 7.6	ft below T	oc (94			
				OUTER CAP: INNER CAP:	_0	0	DEP	TH TO WAT	ER BEFORE P	UMP INSTAL	LATION :	/ft belo	w TOC		
	1					0									
	TIME SPECIFIC (pH units) CONDUCTIVITY (SM 4500H+B) (m5/cm) (EPA 120.1) READING CHANGE* READING CHANGE*					1	REDOX TENTIAL		SOLVED KYGEN		SIDITY		RATURE	PUMPING	DEPTH TO
TIME	(SM 4500H+B) (mS/cm) (EPA						(mv)	(mg/l)	(SM 4500OG)		TU) . 180. 1)	1	ees C) 2550)	RATE (ml/min)	(ft below TOC)
-	6 ()					READING	CHANGE.	READING	CHANGE*	READING	CHANGE.	READING	CHANGE'	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1523	X	X 7.17 NA /4 NA /6 NA				NA	1103	NA.	56	NA	2115	NA	232	705	
17.30	K	7(3	003	1.65	16%	-21	-6	960	127	0.7	83%	2025	42	3	4
1335	X	713	000	1.85	12%	25	-4	865	98-11	09	OK	19.81	27.		1 /
13:40	X	7'12	0.01	(9)	67	26.	~(838	31ン	0.9	01	19.89	1/		1
12:45	1 V	7.62	0.00	219	11%	17	~	8.05	79%	0.9	07,	19 1	1%		
12: Ch	V	7/1	0,00	1354)) 7	2 7	-1	711	7.7		+	1000	1		+ + -
7.50	17	+	0.01	90	2.0	0	- d	186	0)	0.9	01,	17, 7.7	17		1
1353	A	7.11		991	d.d /-	23	-4	1//	1,7%	0,9	01	17.12	17		
146	X.	7,41	0.00	2.34	2.1%	-35	2	1,62	1.64.	0.9	0%	17.67	17		
1705	$\perp \chi$	7,11	000	1247	25%	-40	-5	750	11.	09	o 7.	19.62	17	1	
					0			1.	1	1			· ·		
								1							1
COMMENT	rs:					_									

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.4 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

0

	1		1
SHEET	_V	OF	l

SITE:		Fo	rmer Hes	s - Port R	eading			Objetit Tible	- MARINA						
DATE:		7/14	121		odding			ONSULTING			-	SYSTEMS			
WEATHER	l:	50%	clon.	1 .			F	IELD PERSO	NNEL:		AE				
		a	CIV L	")				CERTIFICAT	TON #2		13	040			
MONITOR			LN - 5		WELL DE	ертн: 17				ec pe	ENER/ARC	LI SALWO-MAPA			
WELL PER	MIT A	-	E20101	3003	WELL DIAM	-				OURE	ENEDIOFE!	N INTERVAL:		7-17'	
PID/FID RI	EADIN	GS (ppm):	BACKGRO	UND:	0,0	2	PU	MP INTAKE	DEPTH: 7.	5 ft halou T	30				
			BENEATH	OUTER CAP:	0,0				ER BEFORE P		/	12			
			BENEATH	INNER CAP:	0.3			, , , , , , , , , , , , , , , , , , , ,	EK BEFORE P	OMP INSIAL	LATION	_VV. It belo	w TOC		
	S	SZ .	pH	1	PECIFIC		REDOX	DIS	SOLVED	TURB	IDITY	TEMPE	RATURE	PUMPING	DEPTH TO
TIME	E G (SM 4500H-R)						TENTIAL	0)	(YGEN	(N	TU)	(degre	ees C)	RATE	WATER
	2	READING CHANGE READING CHANGE				READING	(mv)	(mg/l)	(SM 4500OG)		180 1)	(\$M 2550)		(ml/min)	(ft below TOC)
8.73	1) NA	D231	NA	134	NA	READING	CHANGE*	READING	CHANGE.	READING	CHANGE.		-
8'78	k	EV	7 164	- 21		7 7	/ NA	7,66	NA	715	NA NA	21.80	NA	330	6.21
1502	1	1	1008	0.0) 1	0.1.	360	713	1.38	1001	5º1	13 ×	11.79	17.		6.53
0 (5	/	2.80	0.03	063	17.	365	-5	0.97	120 x	46.8	137	2124	17.		6.39
8,6	X	17.84	0,64	0730	dy,	361	9	097	05	38.7	17-1	2126	1%		0.51
803	K	5.76	0.04	0230	0%	1770	-9	0.97	0 4	71 ,	11	7/74	1 7		
8.58	V	5.76	0.00	0209	1%	374	-4	1747	0 4	34,9	881	21/1	- 1		
9.03		VITT	0.03	0.129	67	379		111	-	-	V	d1,10	17		
	1	2.17		14114	07	111	7	0.7/	2 /1	30.1	8,5x	21.68	(X	1	
	\vdash			-		-									
				-		-									
	\square														
COMMENT															
COMMENT	3:								-		-				
															1

"INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $[\]pm$ 10 mv for Redox Potential; and \pm 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:		Form	er Hess	- Port Re	eading		co	NSULTING	FIRM:		EARTH S	YSTEMS				
DATE:	/	1/19/2	/				Fti	ELD PERSO	NNEL:		Ant					
WEATHER:	,	80 de	226				c	ERTIFICAT	ION #:		130	040				
MONITOR V			LN - 6		MELL DE				SCRI	ENED/OPEN	INTERVAL:		8-18'			
WELL PERM	1ET #:		E2010130	04	WELL DIAME	TER: 4"	Inches									
PID/FID RE	ADING	(nom):	BACKGROU	IND:	Phila	PUMP INTAKE DEPTH: (0.5 ft below TOC										
		(-	BACKGROUND: 0.0 BENEATH OUTER CAP:								/	97				
				INNER CAP:	0	0	UEP	DEPTH TO WATER BEFORE PUMP INSTALLATION : // / ft below TOC								
	(5		эн	Si	ECIFIC	1 8	EDOX	T nie	SOLVED	TUD	BIDITY	YEARDE	DATIME	DIMEDIALA		
TIME	PURGING	(pH	units)		UCTIVITY		TENTIAL		CYGEN		TU)	TEMPERATURE (degrees C)		PUMPING RATE	DEPTH TO WATER	
	PUR		300H+B)	(mS/cm)			(mv)	(mg/l)	(SM 4500OG)	(EPA 180 1)		(SM 2550)		(ml/min)	(ft below TOC)	
7 1/-	90	READING CHANGE: READING CHANGE: READING		CHANGE'	READING	CHANGE*	READING	CHANGE.	READING	CHANGE'						
0.0	X	636	NA	ad 1	NA	177	NA	8.57	NA	219	NA	21.82	NA	315	799	
15:15	K	6.64	0.08	0292	1,7-1.	65		0,21	9/2	9.60	56%	2/62	4%		8.06	
10/0	1	6.66	0.06	0297	1.7%	57	6	Dal	0 %	76	200	21.45	0.7%			
10,15	K	667	0.01	0.302	1.6%	55	4	021	0 4	7.6	65%	1135	0.71			
10:30	V	802)	0,01	0.709	2.34.	53	2	Od/	0 %	7.1	1.7.	71.31	11			
10:35	X	6.69	0.61	P.311	1%.	50	3	odl	0 4,	6.8	5 %	21.21	14,			
10,40		4.70	000	0.320	28,	44	2	160	0 4,	(0.3	7/	2124	15			
												14.00				
										1		<u> </u>				
				1		1		1			_	-				
				 		-	-	-	-	-		-	-			
COMMENT	S:	1														

'INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:		Form	er Hess	- Port Re	ading		co	NSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			7/14	121			FII	ELD PERSOI	NNEL:		KC				
WEATHER:	_		Cloui	4 75			С	ERTIFICATI	ON #:		130	040			
MONITOR V		d: 	LN - 7 E2010130	004	WELL DE	10				SCRE	ENED/OPEN	INTERVAL:		8-18'	
PID/FID READINGS (ppm): BACKGROUND: 00 PUMP INTAKE DEPTH: 10-5 ft below TOC BENEATH OUTER CAP: 00 DEPTH TO WATER BEFORE PUMP INSTALLATION: 8.23 ft below TOC BENEATH INNER CAP: 00 DEPTH TO WATER BEFORE PUMP INSTALLATION: 8.23 ft below TOC															
TIME	TIME PH SPECIFIC REDOX (pH units) CONDUCTIVITY POTENTIAL (SM 4500H+8) (m5/cm) (EPA 120 1) (mv) READING CHANGE: READING CHANGE: READING CHANGE:								SOLVED (YGEN (SM 45000G)	(N:	IDITY (U) 180.1)	TEMPER (degree	es C)	PUMPING RATE (mi/min)	DEPTH TO WATER (ft below TOC)
		READING	CHANGE.		CHANGE'	READING	CHANGE"	(mg/l) READING	CHANGE.	READING	CHANGE.		CHANGE.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(It below roo;
1105	1	6.31	NA	.189	NA	31	NA	2.44	NA	7.2	NA	27.19	NA	480	8.31
1110	7	6.60	01	.514	1711.	-47	18	46	81%	0.0	~	21.86	5%	400	8.31
1112	1	6.76	.10	.569	10%	-57	10	14	65%	0.0	_	21,99	.5%	200	8.31
1120	2	6.75	05	601	5%	-66	9	.09	431.	0.0		27,16	.71	400	8-31
1125	J	6.90	.05	.640	6/.	-72	6	_03	66%	0.0	~	22.45	1,37	400	831
1130	V	6.83	.03	-650	1/	74	2	0.06		0.00		22.3 ×	.4%	400	831
1135	1	6.80	.03	المالي المالي	17.	-77	3	6.00	_	6.0		22.07	17.	400	831
1140		(6.77	.02	.667	17.	-80	3	0.00		0.0		22,17	.51	400	8.31
1690															
COMMENT	B:														

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ! OF

Former Hess - Port Reading								ONSULTING	FIRM:		EARTH	YSTEMS			
DATE:	7	113/21			344119		FI	IELD PERSO	NNEL:	A	D				
WEATHER	_	for a	ordy					CERTIFICAT							
MONITOR WELL PER		-	L1 - 1 260008068	31	WELL DIAME	14	.25' " Inches			SCRE	ENED/OPEN	I INTERVAL:	Maderating Ana	4.25-14.2	5
PID/FID R	EADING	S (ppm):		OUTER CAP:	0,	0			DEPTH: 7.C		•	3.39 ft belov	w TOC		
	o Z	(2)	pH		PECIFIC	1	REDOX		SOLVED		IIDITY	TEMPER	ATURE	PUMPING	рерти то
TIME	TIME US (SM 4500H+B) SPECIFIC (SM 4500H+B) (mS/cm) (EPA 120.1) READING CHANGE* READING CHANGE*					POTENTIAL 0XYGEN (mv) (mg/l) (SM 45000G)					TU) 180 1)	(degre		RATE (ml/min)	(ft below TOC)
	F &	READING CHANGE READING CHANGE				READING	CHANGE.	READING	CHANGE.	(EPA 180.1) READING CHANGE*		(SM 2550)		(**************************************	(17 20154 100)
155	X	(6.1) NA 0.135 NA		NA	713	NA	217	NA	440	NA	25.83	NA	3/1	394	
100	7	6.10	D.0d	6.129	4.4.4	303	(D	1.93	11%	300	71%	20.15	7.	1	1
1205	X	6.4	6.01	0.13	2,34	275	8	1,54	1-1.	257	141	1425	lv		1
NPO	X	6.13	0.01	6144	9%	276	19	1.90	2.4	271	54	20.16	11		11
413	1	6.17	0.04	0.141	2%	221	5	2.06	8%	221	8%	2.30	14		
Ado	X	6.18	001	0141	17	269	1	2.17	3.1.	205	74	1.30	0%		
992	X	6.18	6.00	6144	1.1	264	5	2.11	1%.	187	711	2675	1-1,		
430		(6.17	0.01	6.144	04	264	0	212	11	171	9.1.	26.32	1.		
	+			-	-	-		-							
		1		-		-		-							
COMMEN	TS:	-			1										

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET _ OF [

SITE:		For	ner Hess	- Port Re	anding			ONSULTING	Pathen.		TARRIL O	head and			
DATE:	7	113/1		y - 1 OILING	saumy			ELD PERSO			EARTH S	YSTEMS			
WEATHER:			7.22-	/				CERTIFICAT	_		130				
			,								130	740			
MONITOR		# :	L1 - 2		WELL DE	РТН: 1	5.5'			SCRE	ENED/OPEN	INTERVAL:	5	.5-15.5'	
WELL PER	AFT #:		2600080	0656	WELL DIAME	TER: 4	" Inches								amanangangangangangangang
PID/FID RE	ADING	iS (ppm):	BACKGRO	UND:	D.1	9	PU	MP INTAKE	рерти: _8	ft below TC)C				
			BENEATH	OUTER CAP:	0.0	2	DE	PTH TO WAT	ER BEFORE P	UMP INSTALI	LATION : 3.	Ga ft belo	w TOC		
			BENEATH	INNER CAP:	0.	2									
	ي 2 و		pH	1	ECIFIC	T	REDOX	DIS	SOLVED	TURB	IDITY	ТЕМРЕ	RATURE	PUMPING	рерти то
TIME	PURGING	(SM)	l units) 4500H+B)	(mS/cm)	UCTIVITY	PC	TENTIAL		YGEN	(N1			ees C)	RATE	WATER
	Da S	PH SPECIFIC (pH units) CONDUCTIVITY (SM 4500H+B) (m3/cm) (EPA 120.1) READING CHANGE* READING CHANGE*					(mv)	(mg/l)	(SM 4500OG)	(EPA 180.1) READING CHANGE		(SM 2550)		(ml/min)	(ft below TOC)
628	X	7.21	NA	6.338	NA	187	NA	230	NA	504	NA	20.02	NA	3418	5.15
8.33	6	(94	0.17	0.449	311	125	18	0.40	821	370	38%	1899	6%	1	
8:37	X	656	-0.01	0574	15%	10	8	0.40	OV	2),1	187	1276	124		1
8:42	1	6.90	0.06	0.610	1 14	111	9	0.40	01	145	741	1849	14.		
8747	1	691	6.01	01093	134	1	10	0.70	0 1.	8	44.1	1 831	0.7%		++-
8.1	×	(291	000	6.741	6.9%	一种	7 -6	0,40	04	43	467	רגעו	D.7×		+ + -
8:57	×	6.91	0.00	0.738	0,41.	-4	1-6	0.76	0%	40	6.94	14 70	064		
9ipd	X	6.92	7.01	0.730	1.7	-15	-3	0.40	0 1/	38	54.	18 13	Odx		
907	X	6.92	0.00	0.726	6.5 x.	-17	-2	0.40	0 7	3,60	57.	15.00	0.1%		1 1
9:12	12 XU.92 000 0.84 -18							0,40	N G	3 3	8-1.	17.89	064		
							ì			1.	-				1
COMMENT	S:														
	_														

[&]quot;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $[\]pm$ 10 mv for Redox Potential; and \pm 10% for Dissolved Oxygen and Turbidity

SHEET ___ OF ___

SITE:		Form	er Hess	- Port R	onding.			NSULTING	F:011						
DATE:	-	1 0111		3/21	eading						EARTH S	TSTEMS			
WEATHER:	-		Cloud		y			FIELD PERSONNEL: CERTIFICATION #:							
	-		Clock	775				ERTIFICATI	ON #:		130	040			
MONITOR	WELL	#:	L1 - 3		WELL DE	DTU.									
WELL PER		_	26000806	64	WELL DIAME		4'Inches			SCRE	ENED/OPEN	INTERVAL:		6.4 - 11.4	
			2000000	,04											
PID/FID READINGS (ppm): BACKGROUND: 0, 0 PUMP INTAKE DEPTH: 1 Ch below TOC															
			BENEATH	OUTER CAP:		3	DEP	TH TO WAT	ER BEFORE P	UMP INSTAL	SATION 5	97 to halow	v TOC		
BENEATH OUTER CAP: 0.0 DEPTH TO WATER BEFORE PUMP INSTALLATION :												10000			
	l _o	j F	Н	SF	PECIFIC	R	EDOX	Diss	OLVED	TURB	IDITY	TEMPER	ATURE	PUMPING	рерти то
TIME	PURGING	7 7	units)	CONT	DUCTIVITY	POT	ENTIAL	ох	YGEN	(N1		(degre		RATE	WAYER
	5	(SM 45	500H+B)	(m8/cm)			(mv)	(mg/l)	(SM 4500OG)	00G) (EPA 180.1)		(SM 2550)		(ml/min)	(ft below TOC)
0.5	H		CHANGE.	READING	CHANGE.	READING	CHANGE.	READING	CHANGE.	READING	CHANGE.	READING	CHANGE'		
915	V	6.56	NA	,079	NA	150	NA	3.76	NA	37.2	NA	20,08	NA	400	6.33
920	V	6.24	,32	.117	481	42	108	1.45	611	12,4	661	19.79	17.	400	6.20
925	\lor	6.38	.12	. 145	237.	15	27	1.20	17/	5.8	53%	19.65	17	400	6.22
930		6.47	,09	.164	713%	1	14	1.52	26%	1.8	68%	19.50	(1)	400	6.22
935	1	6.53	,06	.176	7	-7	8	1.65	21.	0.0		19.55	17.	400	6.22
940	\vee	6.57	04	.190	7%	-15	1	1.69	31.	0.0		17.53	Cl.	400	6.22
975	1	6.59	.02	.208	9%	-4	6	1.50	11/	0.0		19.28	.37	400	622
950	\checkmark	6.70	11.	.223	71.	-31	10	1.79	19%	0.0	_	19.57	9/	360	6.22
955	1	6.75	.05	.221	. 87	-35	4	1.81	17.	0.0	-	1970	.8%	400	622
1000	4	6.75		.210	. 47	-37	2	1.19	17.	0.0	Page	19.38	9.1	400	6.22
1005		16.79 07 ,223 11 -41						1.87	17.	0.0	Transporter-	1987	17.	900	6.12
COMMENT	S:	675	47	236	rt.	-46	5	1.79	47.	0.0		19.61	1%		6.22

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ____ OF ______

SITÉ:			For	rme Hes	- Port	Reading		C	ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:				7/17	3/21			F	ELD PERSO	NNEL;			2(1
WEATHER				Cloud,	70,				CERTIFICAT	ION #:		130	040			
MONITOR WELL PER			2	L1-4 600080	672	WELL DIAME		Inches			SCRE	ENED/OPEN	I INTERVAL:	_	6-11'	
PID/FID RE	ADIN	igs	(ppm):		JND: OUTER CAP: INNER CAP:	0. 0. 0.	C			TER BEFORE P			ft belo	w TOC		
TIME	PURGING		(pH	pH S (pH units) CON (SM 4500H+B) (mS/cm		PECIFIC DUCTIVITY) (EPA 120.1)		REDOX TENTIAL (mv)	1	SOLVED (YGEN (SM 4500OG)	(N	TU) 180.1)	(degre	TEMPERATURE		DEPTH TO WATER (ft below TOC)
	5	SA	READING	CHANGE.	READING	CHANGE*	READING	CHANGE.	READING	CHANGE*	READING	CHANGE'		CHANGE*	(,	(,
1050	V		6.82	NA	292	NA	182	NA	8.73	NA	16.5	NA	21.26	NA	300	7.22
1055	J		6.77	0.05	290	100	202	20	8.38	40%	4.8	70%	21.37	10%	200	7.24
1100	J		6.74	0.03	-290	-	212	10	7.93	50/0	4.8	-	21.47	10/0	200	7.24
١١٥٢	~		6.73	0-01	.780	-	218	6	7.73	2%	4.8	-	21.48	10/5	20ء	7.17
1110	1		6.74	Gui	. 284	ion	222	4	7.41	40%	4.8	-	21.48	-	200	7.12
lus	+	>	6.74	-	.283	-	225	3	7.17	243	4. 8	-	21.51	10/0	700	7.22
	1															
	\perp															
	\perp															
COMMEN	TS:															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET L OF

SITE:				- magnicorn											
		Forr	ner Hess	- Port R	eading		С	ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:	- (115/1	1				F	IELD PERSO	NNEL;	AL	?				
WEATHER:	-	80 1	11.220					CERTIFICAT	ION #:		130	040			
MONITOR V			BG - 2 260000813 <u>(</u>	0	WELL DE					SCRE	ENED/OPEN	INTERVAL:	**************************************	4 - 9'	
PID/FID REA	DING	i (ppm);	BACKGRO	UND:	0.6	······································	PU	MP INTAKE	ВЕРТИ: 5	ft below TO	·c .				
			BENEATH	OUTER CAP:	0.0				ER BEFORE P			T # holos	u ፕስር		
			BENEATH	INNER CAP:	0.0				,			P	* 100		
	N O	(-11	рН		PECIFIC	1	REDOX	DIS	SOLVED	TURB	IDITY	TEMPER	ATURE	PUMPING	DEPTH TO
TIME	A M	(SM 4	onits) 500H+B)	(mS/cm)			TENTIAL			(NTU)		(degrees C)		RATE	WATER
	PU	READING	CHANGE.	READING	CHANGE*	READING	(mv)	(mg/l)	(SM 45000G)	(EPA	CHANGE	(SM 2	SSO)	(mi/min)	(ft below TOC)
10:00	×	705	NA	6087	NA	15	NA	13=	NA	550	NA	26.78	NA	250	
10:03	X	6.54	6.51	0.067	22.7	164	-13	0.00	1004-	301	45%	2787	47	215	241
10:10	K	6.34	6.20	0.074	/6 ¥	151	5	020	Oh	737	11	2716	14		381
0.12	X	4.17	0/7	o. of d	12 4.	155	4	020	0%	344	324	16.78	28,		1
10/26	Χ	ach	709	0.070	9%	149	6	0,00	011	318	8.1.	2617	14.		
16,25	X	6.05	0,63	0.090	0 %	140	9	0,10	04	289	9.1.	1596	17.		
10.34	(603	6.00	0,090	0 %	133	7	0.40	0.4	264	7-1	25.90	17		
1637	×	6.00	6.03	0.090	0 %.	125	8	0.10	0%	249	7%	15.88	1.		
1040	X	683	000	0.090	0 4.	40	5	0.00	0 7.	23.5	51	2584	1%		
COMMENTS															

1

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:		Form		- Port Re	eadin g		C	ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:	_		E	7/13/21			F	ELD PERSO	NNEL:		R	0			
WEATHER:			C16- J.	1 70				CERTIFICATI	TIFICATION #: 13040						
MONITOR 1		- 2	100000		WELL DE	9.1	Inches			SCR	EENED/OPEN	INTERVAL:	_	4 9 7	-12
PID/FID RE	ADINGS	5 (ppm):	BACKGRO	UND:	Ç	S, O	PUI	MP INTAKE I	рерти:	ft below T	oc 8.5				
				OUTER CAP: INNER CAP:	_ 0	0			ER BEFORE P			7) ft belov	w TOC		
	2 2	P	рН		PECIFIC REDOX		REDOX	DISS	SOLVED	TURI	BIDITY	TEMPERATURE		PUMPING	DEPTH TO
TIME	PLE CIN	(pH u (SM 45)		1	DUCTIVITY	PC	TENTIAL	ко	YGEN		ITU)	(degre		RATE	WATER
	PUI	(pH u (SM 45) READING	CHANGE.	(m\$/cm)	(EPA 120.1)	READING	(mv)	(mg/l)	(SM 4500OG)	(EPA	(180.1)	(SM 2	CHANGE	(ml/min)	(ft below TOC)
1250	1	6.71	NA	.217	NA	33	NA	9.18	NA	2.9	NA	22.05	NA	3.0	3.10
1255	1	6.65	ماه.	. 208	47.	38	5	7.91	13/	8:1	8%	22.39	1.5%	200	3,31
1300	1	6.60	305	.219	3:/.	34	4	6.91	127.	2.3	711.	23.79	17/	160	341
1305	1	6.58	. 62	. 22>	37.	30	4	6.02	12/	1.1	521	22.74	17.	160	3.50
1710	J	6.57	(6)	. 230	'5/.	26	4	5.50	8/	0.7		22.93	-3/	160	3,57
1315	1	6.58	,01	.272	81	16	10	500	91/.	0.0		22.79	-17	(60	350
1220	/	6.60	,02	,236	1/	10	6	4.09	1.87	0.0		22,61	31	100	3.67
1725	1	6.61	101	. 240	2/	4	6	3.93	37	0.0		22.73	7/	160	3.66
1570	1	661	-	.241	17		3	3.63	71.	00	_	22,31	.5%	160	3.70
1735	. /	6-61		.272	17.	-2	>	3.29	9/	00	-	22.23	.37	160	3.73
-4D-40/27-247	1 1	i										1			

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

NJDEP Certification No. 13040

Equipment: Huriba USZ Serial Number: 033462/25352

				p	Н		
Time	Temperature	Zero Pt (pH 4)	Lot / Exp Date 3/3//23 /6 (75 75 \text{ 75 \text	Span Pt (pH 10)	Lot / Exp Date 3/31/2.3 / (b/24)6	Initial Check (must be within +/- 0.1 units or need to recalibrate) (pH 7 - acceptable range 6.9-7.1)	Lot / Exp Date
		Initial Reading	Adjusted	Initial Reading	Adjusted	(pro- deceptable (diage dia 712)	Recalibrate (Y/N)*
2805	21.17	4.10	4.0	9,97	10:0	7.02	N
		pl	1 3 Hour Check (*2-poi	nt calibration only need	is to be conducted if check value		Mark I
Γime (3 hr	_	Zero Pt * (pH 4)	Lot / Exp Date	Span Pt * (pH 10)	Lot / Exp Date	Check (must be within +/-0.2 units or need to recalibrate)	Lot / Exp Date
check)	Temperature					(pH 7 - acceptable range 6.8-7.2)	
1105	22.09					7.14	
1105	42.09					7,14	

				Conductivity			
Time	Zero (Ambient Air)	Lot / Exp Date	Span (1.413 ms/cm)	Lot / Exp Date	Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date	
Tille				166.1036	(use 1.413 ms/cm - acceptable range 1.398 - 1.427)		
	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	
DYC	0.002	0.0	1.65	1.41	1.42	N	

				Turbidity		
Time	Zero	3/11/22	Span (100 NTU)	Lot / Exp Date 3 /15/2マ	Check - must be within +/- 10% or need to recalibrate	Lot / Exp Date
rime		21030147	,	21100045	(use 100 NTU - acceptable range 90- 110 NTU)	
	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
0 8 15	15	0.0	162	100	101.4	N

			Dissolved Oxy	gen	
Time	Zero	Lot / Exp Date 10/2つ(2)	Air Span	Lot / Exp Date	Check - reading must be 0.3mg/L or less
	(0% Solution)	2019080750	(100%)		(0% Solution)
	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value
OSZO	0.9	0.0	100.4	100	0.1

NJDEP Certification No. 13040

Date: 10/15/2 Job #/Name: Serial Number: 033412/25352

e 6.9-7.1)
Despillante (M/N)
Recalibrate (Y/N)
/-0.2 units Lot / Exp Date ate)
e 6.8-7.2)

				Conductivity		
Time	Zero (Ambient Air)	Lot / Exp Date	Span (1.413 ms/cm)	2/3/2/	Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date
Time				1601036	(use 1.413 ms/cm - acceptable range 1.398 - 1.427)	
	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)
0925	,003	0.0	1,44	1 41		

			Contract of the	Turbidity			
Time	Zero	Lot / Exp Date	Span (100 NTU)	Lot / Exp Date 3/15/2 ヱ	Check - must be within +/- 10% or need to recalibrate	Lot / Exp Date	
		21030/47		211000 45	(use 100 NTU - acceptable range 90- 110 NTU)		
	Initial Reading	Adjusted	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	
0430	0.0	0.0	125	120	105		

			Dissolved Oxy	gen	
	Zero	Lot / Exp Date	Air Span	Lot / Exp Date	Check - reading must be 0.3mg/L or less
Time	(0% Solution)	2019080750	(100%)		(0% Solution)
	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value
CP35	, (7)	0.0			* 22

Date: 10/13/21 Job #/Name: No. 7 Lf Weather: Cloudy 65 Personnel: KY

U-57 Serial Number: 033402/25352

		Zero Pt	Lot / Exp Date	Span Pt	Lot / Exp Date	Initial Check (must be within +/-	Lot / Exp Date
Time	Temperature	(pH 4)	3/31/23	(pH 10)	3/31/23	0.1 units or need to recalibrate)	3/31/23
	_	Initial Reading	/ 6 C 758 Adjusted	Initial Reading	/ 6 C 436 Adjusted	(pH 7 - acceptable range 6.9-7.1)	/ (6 C /0 8 9 Recalibrate (Y/N)
2845	21.03	4.08	4.0	10.08	10.0	7.04	A /
		pl	i 3 Hour Check (*2-pol	int calibration only need	s to be conducted if check value		7.9
		Zero Pt *	Lot / Exp Date	Span Pt *	Lot / Exp Date	Check (must be within +/-0.2 units	Lot / Exp Date
ime (3 hr check)	Temperature	(pH 4)		(pH 10)		or need to recalibrate)	
1050	21.51					(pH 7 - acceptable range 6.8-7.2)	
						7,14	

				Conductivity		
Time	Zero (Ambient Air)	Lot / Exp Date	Span (1.413 ms/cm)	3/31/2022	Check (must be within +/-1% or need to recalibrate)	Lot / Exp Date
-	Initial Reading	Adjusted	Initial Reading	16(1036	(use 1.413 ms/cm - acceptable range 1.398 - 1.427)	
0850			midal Reading	Adjusted	Check Value	Recalibrate (Y/N)
7830	6.004	0.0	1.82	1.41	1.42	N

	_			Turbidity		
	Zero	Lot / Exp Date	Span	Lot / Exp Date	Check - must be within +/- 10% or	Lot / Exp Date
Time		3/21/22	(100 NTU)	3/15/22	need to recalibrate	,
		21030147		21100048	(use 100 NTU - acceptable range 90-	
V65.5	Initial Reading	Adjusted	Initial Reading	Adjusted	110 NTU) Check Value	Recalibrate (Y/N)
0023	1.8	0.0	180	100	99-1	N

			Dissolved Oxy	gen	
T !	Zero	Lot / Exp Date 10/27/2/	Air Span	Lot / Exp Date	Check - reading must be 0.3mg/L o
Time	(0% Solution)	2019080750	(100%)		(0% Solution)
	Initial Reading	Adjusted	Check Value	Recalibrate (Y/N)	Check Value
900	1.1	0.0	101.5	100	2.0
			7		0.6

SHEET 1 OF 1

SITE:			Form	er Hess	- Port Re	eading		C	DNSULTING	FIRM:		EARTH S	YSTEMS			
DATE:				10/14/				FI	ELD PERSO	NNEL:		KY				
WEATHER	_			SUANY -					ERTIFICAT	ION #:		130	40			
MONITOR WELL PER				LN - 1 260000813	30	WELL DE		1.85'			SCRE	ENED/OPEN	INTERVAL:		8 - 14.85	
PID/FID RE	ADIN	IGS	(ppm):		UND: OUTER CAP: INNER CAP:		0			DEPTH: 10・0			र3 ft belo	w TOC		
	ğ	S C	pl (pH u		1	PECIFIC		REDOX	1	SOLVED	1	BIDITY		RATURE	PUMPING	DEPTH TO WATER
TIME	JRG.	MPCI	pl (pH u (SM 45) READING	-	(mS/cm)	(EPA 120.1)	Po	TENTIAL (mv)	(mg/l)	(YGEN (SM 4500OG)		TU) 180.1)	(degre		RATE (ml/min)	(ft below TOC)
	I	SA	READING	CHANGE*	READING	CHANGE.	READING	CHANGE'	READING	CHANGE.	READING	CHANGE"		CHANGE"		
820	1		6.07	NA	1.54	NA	-56	NA	1.14	NA	61.4	NA	21.81	NA	215	5.56
855	1		6.09	٥٤.	1.53	65	-64	8	0.80	-29.87	83 9	36.65	21.84	-19		
900	1		6-12	60	1.52	65	-68	4	0.65	-18.75	75.3	10.25	21.39	2.3		
305	1		6.14	.02	(5)	66	.70	2	0.58	~ (0.77	72.i	-4.25	21,91	0.08		
910	1		6.16	-02	1.51	-	-72	7	0.38	-34.348	63.8	41.51	21.98	. 32		
915	1		6.17	.01	1.49	-1.33	-24	2	0.23	-39.47	60.5	-5.17	22.02	-18		
920	V		6.19	.02	1.48	67	-75	1	0.17	-26.09	56.1	-7.27	22.05	- (4		
925	~		6.20	ز ت ِ	1.46	-1.35	-76	4	6.16	-5.88	52.3	-6.77	22.08	-14		
930	V		6.21	-01	1.45	69	-76	_	0.16	-	49.7	-4.57	22.09	-05		
33 T	V		6.21	-	1.44	69	-76	-	0.15	-6.25	47.0	-5.43	22.12	-14		
540		1	6.20	.01	1.45	65	-76	-	0.[[-6.25	42.2	-4.97	22.11	-	U	
COMMEN	rs:															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET __ OF __

SITE:			Earm	or Haas	Dort D	adine			NSULTING	CIDM.		EARTH S	VCTEHC			
DATE:			FUHIN	July 15	- Port Re	eading		- 7	ELD PERSO		1,	EARTHS	ISIEMS			
WEATHER:			5100	1112	75	11-			ERTIFICAT			130	140			
	-		21.00	ay,	1											
MONITOR				LN - 2		WELL DE	10.				SCRE	ENED/OPEN	INTERVAL:		7.75-13.75	'
WELL PERI	AIII #	:	:=	2600007	562	WELL DIAME:	TER: 4"	Inches								
PID/FID RE	ADIN	GS	(ppm):	BACKGROU	JND:	Á	D			DEPTH: 8.5						
					OUTER CAP:	0,	0	DEP	TAW OT HT	ER BEFORE PI	UMP INSTAL	LATION : 5.	94 ft belo	w TOC		
				BENEATH I	NNER CAP:		್ರ									
	PURGÍNG	S NG	iq u Ha)	H + \		PECIFIC +3%	PO	TENTIAL 70	DIS	SOLVED + 14	TURE	TU) [±] 0%	TEMPER	es C)-3/	PUMPING RATE	DEPTH TO WATER
TIME	URG	MPL	(SM 450		(mS/cm)			(mv)	(mg/l)	(SM 4500OG)	, ,	180.1)	(SM:	9	(ml/min)	(ft below TOC)
	101	ŝ	READING	CHANGE'	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE'		
11501	×		6,57	NA	.492	NA	-90	NA	0.09	NA	0,0	NA	23.22	NA	275	5.89
11729	7		6.53	-104	.492		-98	.8	0.0		0-0	_	15.45	4.26		5.89
1134	×		6.55	.02	502.	2.03	-102	4	010		0.0	a termina	24,44	.95		5.89
1139	×		6.59	.04	, 497	- ,99	-105	3	6.6	400	0.0		24.59	.62		5.89
1144	ĸ		6.62	.03	,487	-2.01	-108	3	0.0		0.0		24.81	. 90		5.89
1150		×	660	.02	.490	~ 065	-111	3	6.3	_	0.0	_	24.78	_	1	5-89
	1															
COMMENT	S:					C 0		11/15								
						Jung gl	~ (2)	1143)							

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ____ OF ___

SITE:			Form	er Hess	- Port R	eading		C	ONSULTING	FIRM:		EARTH S	SYSTEMS			
DATE:				10/14				F	TELD PERSO	INEL;		RC				
WEATHER:	_			5000	73				CERTIFICATI	ON #:		13	040			
MONITOR V				LN - 3 26000075	563	WELL DE					SCRE	ENED/OPEN	I INTERVAL:		5.75 - 11.7	5'
PID/FID REA	ADIN	igs	(ppm):		UND: OUTER CAP: INNER CAP:	-	0 0 0 0 0. u	PU	MP INTAKE (ER BEFORE P	ft below T		30 ft below	w TOC		
TIME	PURGING	SAMPLING	(pH s	H units) 00H+B)	1	PECIFIC DUCTIVITY) (EPA 120.1)	1	EDOX FENTIAL (mv)		YGEN (SM 4500OG)	(N	BIDITY TU) . 180.1)	TEMPER (degree (SM 2	es C)	PUMPING RATE (mi/min)	DEPTH TO WATER (ft below TOC)
	5	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE.		CHANGE*		
1130	y		6.60	NA	155	NA	7113	NA	.63	NA	0.0	NA	22.00	NA	300	5.62
1135	×		100	0.01	1.54	10/5	-117	4	0.00	1000/0	0,0	-	23.61	10/0	300	5.61
1140	À		4.62	0.01	1.54	-	-121	4	000		00	_	23.31	10/0	300	5.61
1145	×		6.63	0.01	1.50	10/3	-123	2	000	-	0.0	-	23.41	10/0	300	5.61
1150	X		6.62	0.01	1.49	19/5	-120	3	0.40	_	0.0	_	23.39	140	300	5.61
1155		×	601	0.01	1,77	100	-118	2	0-2	-	00	-	23.31	10%	700	5.61
1200																
COMMENT	rs:															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ____ OF _____

SITE:		Form	ner Hess	- Port R	eading			ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			10/14/					IELD PERSOI	INEL:		RC	,			
WEATHER:								CERTIFICATI	ON #:			340			
MONITOR V			LN - 4 260000813	31	WELL DE		5'Inches			SCRE	ENED/OPEN	INTERVAL:	-	5.5 - 16.5'	
PID/FID REA	ADINGS	S (ppm):		UND: OUTER CAP: INNER CAP:		0 0			ER BEFORE P			.39 ft below	w TOC		
TIME	PURGING	(pH	p H units) 500H+B)		PECIFIC DUCTIVITY) (EPA 120.1)	1	EDOX FENTIAL (mv)	1	YGEN (SM 4500OG)	(N	11DITY TU) 180.1)	TEMPER (degree (SM:	ees C)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	PU	READING	CHANGE'	READING	CHANGE*	READING	CHANGE'	READING	CHANGE*	READING	CHANGE*		CHANGE'	(,	(1. 50.01. 1.55)
950		6.75	NA.	1.73	NA-	-116	NA .	-	NA	96.4	NA	2/35	NA	400	7.44
955						1				-					1
1000	1	6.88	14	1.68	_	-125	_	305	_	75.2	_	21.55	_	400	7.45
1085	1	6.97	0.06	1.67	10/0	-139	14	1.63	460/3	44.9	40%	4.60	10/3	400	7.45
1610	J	7.03	0.09	1.67	10/0	-154	15	0.98	4000	26.6	410%	21.67	10/3	COY	7:40
1015	1	7.05	0.62	1.48	10%	-159	5	1800	10000	19.4	260/0	21.58	10/0	400	7.45
1620		7.05	-	1.48	, 	-165	1	.100	p=	19.4	10/3	21.69	1%	400	7.45
1025	1	7.01	-	1.69	14/2	-162	2	0,00	-	19.1	20,	21.77	10/5	400	7.45
1030	1	7.07	0.02	1.49		-169	2	0,00	-	13.9	4015	21.81	10/5	400	7,45
1035	1	1.08	0.01	1.68	1013	-167	3	0.00		19.6	300	21.80	140	400	7,45
COMMENT	S:														

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ___ OF ___

SITE:			Forme	v Hess	Port 1	Recling			CONSULTING	FIRM:		EARTH S	SYSTEMS			
DATE:			<u>1</u>	SUMAY 6)				FIELD PERSO	NNEL:		R (
WEATHER:	-			SUMMY 6	0,				CERTIFICAT	ION #:		13	040			
MONITOR			E	LN.5 20101300	0.7	WELL DE	_				SCRI	EENED/OPEN	I INTERVAL:	-	7-171	
PID/FID RE	ADII	NGS	(ppm):		UND: OUTER CAP: INNER CAP:	0	0 0			DEPTH: 9.5			डिटी ft belo	w TOC		
TIME	RGING	SAMPLING	Hq)	p H units) 500H+B)	1	PECIFIC DUCTIVITY) (EPA 120.1)	1	REDOX TENTIAL (mv)		SOLVED KYGEN (SM 45000G)	(N	BIDITY ITU) (180.1)	(degr	RATURE ees C) 2550)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	1	SA	READING	CHANGE'	READING	CHANGE.	READING	CHANGE*	READING	CHANGE*	READING	CHANGE.		CHANGE.		
1320	1		6.34	NA	180	NA	84	NA	2.53	NA	17.4	NA	22 33	NA	380	7.36
1325	V		6.00	0.34	179	3.3 %	106	ga	1.59	21%	(8.8)	80%	22.68	200	366	7.58
1330	V		572	0.18	168	3.4%	159	53	1.64	18%	20.4	1900	22.89	243	340	7.60
1335	1		573	0.67	169	1%	164	5	1.54	60/5	26.8	310/	23.06	100	340	7.62
1340	V		573	-	169	-	169	5	1.44	60%	QL. 4	2010	23.42	200	340	7.62
1345	10	1	5.73		.169	-	170	1	1.42	10%	25.9	20%	23.61	20%	340	7.63
1350	12		5 74	0 (0)	169	-	174	4	1.40	10%	27.1	50/3	23.30	10/0	340	7.64
1355		/	\$ 74	0,01	169	_	175	1	1.37	106	26.0	40/0	23.42	140	340	7.45
COMMENT	rs:															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $[\]pm$ 10 mv for Redox Potential; and \pm 10% for Dissolved Oxygen and Turbidity

SHEET ___ OF ___

SITE:			Forme	er Hess	- Port Re	eading			CONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			10	114/21					FIELD PERSO	NNEL:	KY					
WEATHER:			<.		75				CERTIFICATI	ON #:		13	040			
				1.0						,,						
MONITOR V				LN - 6		WELL DE	10				SCRE	ENED/OPEN	I INTERVAL:		8-18'	
WELL PERM	AIT #	¥:	-	20101300)4	WELL DIAME	TER: 4"	Inche	3							
PID/FID RE	ADIN	igs	(ppm):	BACKGROU	ND:				UMP INTAKE I	DEPTH: /O. S	ft below To	oc.				
			() provide	BENEATH C		_ 0 - 0			PEPTH TO WAT			_	.44 ft belo	w TOC		
				BENEATH I	NNER CAP:	0.										ĺ
		U	pi	1	SF	ECIFIC	R	REDOX	DIS	SOLVED	TURE	BIDITY	TEMPE	RATURE	PUMPING	DEPTH TO
TIME	PURGING	SAMPLING	(pH u			UCTIVITY	POT	TENTIAL	0)	YGEN		TU)	1 ' "	ees C)	RATE	WATER
	PCR	SAM	(SM 450	OH+B)	(mS/cm)	(EPA 120.1)	READING	(mv)	(mg/l)	(SM 4500OG)	(EPA	180.1)		2550)	(ml/min)	(ft below TOC)
	./	H						+	READING	 	-	CHANGE*	READING	_	N- 4	4100
1220	ľ	Н	6.51	NA	,298	NA	-98	NA	00	NA	0'0	NA	26.08		275	8.49
1225	V		6.44	J	,305	2.35	-105	7	0.0		0.0	_	25.49	-2.26		8.50
1230	V		6.42	-OZ	0310	1.64	-106		0.0		0.0		25.39	39		8.51
1235	V		6.44	_02	.319	2.90	7///	5	0.0		0.0	_	25.52	.51		8,51
1240	V		6.48	.04	,327	2.51	-114	3	0.0		0.0	-	25.67	.59		8151
1245		1	6.49	. 0 1	.327	_	-117	3	0.0	_	0.0	_	25.60	-	J	8.51
	Γ															
COMMENT	S:					10	л									
					Sun	de (7) 1	245								
	_	_			- 1											

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET / OF

SITE:			Form	er Hess	- Port Re	eading		CO	NSULTING	FIRM:		EARTH S	YSTEMS			
DATE:				10/14				FIE	LD PERSO	NNEL:	11	/				
WEATHER:				Smry					ERTIFICAT	10N #:	101	130	40			
					/											
MONITOR V			_	LN - 7	204	WELL DE	10	Inches			SCRE	ENED/OPEN	INTERVAL:		8-18'	
WELL PER	*****	er:		E201013	004	WELL DIAME	TER: 4"	inches								
PID/FID RE	ADIP	NGS	(ppm):	BACKGROU	JND:	0 -	0			DEPTH: 10.5						
				BENEATH	DUTER CAP:	0 ~ 0		DEP	TH TO WAT	TER BEFORE P	UMP INSTAL	LATION: 7.	7 ft belo	w TOC		
				BENEATH	INNER CAP:		0									
	٥	92	р	H ± al	1	PECIFIC ± 3/6	R	EDOX + 10	DIS	SOLVED 10%	TURE	IDITY 6 FU) [±] /0 /a		RATURE 6	PUMPING	DEPTH TO
TIME	PURGING	MP		units) i00H+B)	(mS/cm)	(EPA 120.1)	1	(mv)	(mg/l)	(SM 4500OG)	(14	180.1)		ees C)- 3/3 2550)	RATE (ml/min)	(ft below TOC)
	3	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE'	READING	CHANGE'	,	,
1014	×		6.43	NA	- 358	NA	-69	NA	« 3 %	NA	0.0	NA	24.88	NA	275	9.04
1019	γ		6.44	.03	.387	8.10	-79	10	.11	-71.05	0.0		05.25	.48		9.04
1024	У		6.56	.08	.911	6.20	- 89	10	0.0		0.0		75.77	1.08		9.05
1029	7		6.60	.04	.430	4.62	- 97	8	0.6		0,0	_	25.43	. 63		9.05
1034	Y	L	6.65	.05	.454	5.81	-103	6	0,0		0.0	_	25.47	0/6	en en armi (example)	9.05
1039	>		6.67	56.	.464	2.20	-10%	3	0.0	_	0.0		25.58	W.43	Pilabaryan	9.05
1044	7		6,69	50.	.477	2.40	112	6	6.0	_	0,0		25.75	.67		9.05
1049	7		6.71	.02	.484	1.47	7114	2	0,0		0.0		25.74	04		9.05
1055		7	670	:01	.484	_	- 117	3	6.0	_ ~	0.0	-	25.74	-	4	9.05
COMMENT	S:		San	ple !	D 10	55										

^{&#}x27;INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ____ OF ____

SITE:		Form	ner Hess	- Port Re	eading		co	NSULTING	FIRM:		EARTH S	YSTEMS			
DATE:		10/13/					FII	ELD PERSO	NNEL:	1	4				
WEATHER:		Cloudy					с	ERTIFICAT	TON #:		130	40			
MONITOR WELL PER		_	L1 - 1 260008068	11	WELL DIAME	14	.25' Inches			SCRE	ENED/OPEN	INTERVAL:	-	4.25-14.25	5
PID/FID RE	ADING	S (ppm):		UND: OUTER CAP: INNER CAP:	_ O,c			TH TO WA	DEPTH: 7'	UMP INSTAL		₹3 ft belov	w TOC		
TIME	PURGING	(pH	pH ± / / / / / / / / / / / / / / / / / /		DUCTIVITY (EPA 120.1)	PC	REDOX IO	DIS 0 (mg/l)	SOLVED + XYGEN (SM 45000G)		180.1)	TEMPER (degree (SM:	ees C)- 50	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	J5 5	READING	CHANGE*	READING	CHANGE*	READING	CHANGE.	READING	CHANGE*	READING	CHANGE*	READING	CHANGE'		
1230	K	5.14	NA	0.528	NA	131	NA	1.96	NA	33.5	NA	24.97	NA	275	5.24
1235	8	5.05	09	0.527	189	151	20	1.66	-15.31	26.3	-21.49	25.14	. 681	- Common of	5.30
1240	K	5.01	04	0.499	-5.31	168	17	1.57	-5.42	18.1	-31.18	25.16	08		5.34
1245	l _e	4.96	05	0.486	-2.61	179	11	1.52	-3,19	15.3	-15.47	25.20	:16		5.36
1250	(4.96		0.485	21	184	5	1.45	- 4.61	13.8	- 9.80	25.22	.08		5.36
1255		4.98	50.	0.488	-62	187	3	1.42	-2.1	13.1	-5.07	25.28	.24		5.36
1300	A	5.01	,03	0.490	.41	188	1	1,40	-1.41	12.8	-2.29	25.30	.08		5.36
Hor		5.02	.01	0.452	٠٠٥٠.	189	N.	1.42	-1.41	12.9	-	25.32	. ७२	9	5.36
	Ш														
		1						1							
COMMEN	rs:	4	Jungl	L D	1300		*								

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:		Form	er Hess	- Port R	eading		CC	NSULTING	FIRM:		EARTH S	YSTEMS			
DATE:		10/13/2					FI	ELD PERSO	NNEL:	K	9				
WEATHER:	_(lordy	70					ERTIFICAT	10N #:		130	140			
MONITOR V			L1 - 2 2600080	0656	WELL DE		5.5' Inches			SCRE	ENED/OPEN	INTERVAL:	5	.5-15.5'	
PID/FID RE	ADINGS	(ppm):		UND: OUTER CAP: INNER CAP:	0. (0			DEPTH:			<u>- / 7</u> ft belo	w TOC		
TIME	RGING	(pH t	#	CON (mS/cm	PECIFIC # 3 9 DUCTIVITY		TENTIAL		SOLVED O KYGEN 10/2 (SM 45000G)	(N	TU) -/0/2		RATURE Des C)-3 /	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	P. SAI	READING	CHANGE'	READING	CHANGE*	READING	CHANGE.	READING	CHANGE*	READING	CHANGE*	-	CHANGE*	(moning)	(It below TOC)
0938	×	6.18	NA	1.48	NA	-22	NA	7.03	NA	173	NA	20.45	NA	275	6.19
0943	×	6.13	05	1.43	-3.38	-27	5	0.11	-89.32	148	14.45	Zo.58	0.63	1	6,19
0948	ĸ	6.13		1.47	2.80	-36	9	0.0		127	- 14.19	20.65	0.34		6.19
0953	x	6.14	001	1.48	0.68	-47	411	0.0		102	-19.69	20.67	0.097		6.19
0958	>	6.18	.04	1.50	1.35	-59	12	0,0		77.0	24.51	20.71	0.19		6.19
1003	K.	6.21	,03	1.50		-67	8	0.0		68.5	11.04	20.74	0.14		6.19
1008	>	6,23	# O.S	1.51	.667	-72	5	0.0		62.9	8.18	20.73	-,048		6.19
1013	Ye	6.28	,05	1.51	_	-79	7	0.0		58.5	6.99	20.73	_		6-19
1018	ĸ	6.31	.03	1.51		-83	4	0.0	_	55.7	4.79	20.72	048		6.19
1022	×	6.33	.02	1.51	-	- 86	3	6.0	_	55.2	_	20.72	_	1	6.19
COMMENT	s:	angli	10	20											

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ___ OF ____

SITE:			Furmer	Hess -	Port Re	colors		C	ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:	-			113/21					TELD PERSO	NNEL:		RC				
WEATHER:	_			OU EACA	57				CERTIFICAT	ION #:		130	40			
MONITOR			2	60080	664	WELL DE					SCR	EENED/OPEN	INTERVAL:	_ 6	, 4~H. Y !	
PID/FID RE	ADI	NGS	(ppm):		JND: DUTER CAP: INNER CAP:	0 - 0 (0 - (2			DEPTH: 8.5			<u> </u>	w toc		
TIME	TIME 2 2 (SM 4500H+B) (mS)					PECIFIC BUCTIVITY (EPA 120.1)	1	REDOX TENTIAL (mv)	1	SOLVED (YGEN (SM 4500OG)	(h	BIDITY ITU) \ 180.1)	TEMPER (degree (SM 2	es C)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	READING CHANGE READIN		READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE'				
955	1		6.11	NA	.543	NA	-71	NA	1.36	NA	24.7	NA	20.19	NA	400	6.68
1000	J		6.48	.37	.550	10%	-104	33	.55	600%	13 1	470/3	20.13	143	400	6.65
1005	1		6.56	80.	.570	40/3	-119	15	.60	90/3	7.9	400%	2010	ioro	400	6.65
1010	1		6.66	:.10	.571	10/0	-134	15	.66	100%	4.6	42013	20.67	1%	400	6.65
1015	V		6.67	. 01	.780	2013	~130	ધ	.62	6%	1 2	740%	20.10	1%	400	6.64
1020	1		6.68	.01	. 587	10/5	-128	2	.60	3013	1-0	160%	19.97	10/6	400	6.65
1025	V		620	.02	.551	10/5	-125	3	.54	100%	1.6	-	20.00	10/3	400	6.66
1070	1		6.75	.05	. 604	2015	-127	.5	.52	4%	n. D		20.03	100	400	6.67
1035	\ <u>\</u>		6.77	50.	واق إ	10%	-130	3	.76	80/3	1.0	-	a0.01	195	400	6.67
1040		1	6.80	.03	-611	10/5	-132	2	.55	30%	1.0	100	20.04	10%	400	6.67
COMMENT	rs:								*							

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:		Form	er Hess	- Port Re	eading		cc	NSULTING I	FIRM:		EARTH S	YSTEMS			
DATE:			10/				FI	ELD PERSON	INEL:		RC				
WEATHER:		C)wint	-				CERTIFICATI	ON #:		130	40			
MONITOR V			L1 - 4 260008067	2	WELL DE					SCRE	ENED/OPEN	INTERVAL:		6 - 11'	_
PID/FID READINGS (ppm): BENEATH OUTER CAP: BENEATH INNER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION:													w тос		
TIME	PURGING	(pH (SM 45	o H units) 500H+B)	1	ECIFIC DUCTIVITY (EPA 120.1)	1	REDOX TENTIAL (mv)		YGEN (SM 4500OG)	(N.	TU) 180.1)	TEMPER (degree (SM 2	es C)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	PU	(SM 4500H+B) (mS/cm) (EPA 120.1) READING CHANGE READING CHANGE READING		READING	CHANGE*	READING	CHANGE*	READING	CHANGE*		CHANGE"	(,	(
115	1	6.84	NA	-322	NA	37	NA	3.28	NA	190	NA	2039	NA	300	843
1/20	V	6.88	0 04	.322		51	14	3.03	70%	45.1	7695	20.42	100	320	851
1125	V	6.78		322		57	6	2.96	3%	10.9	6070%	251	1%	320	8.85
1130	1	6.89	0.01	-322		66	9	290	2010	6.4	4195	20,61	10/5	370	P.25
1135	V	6.89	_	-322		70	Ц	2.85	2010	1.0	8403	20,63	10/0	340	8.25
170	V	6.87	_	.322	_	74	L	2.83	10/5	0.9	10%	20.69	10/3	340	1.25
1145	V	6.89	-	.322		76	2	580	10/5	0.9	-	20.66	1%	340	8.25
1120		6.89	-	.322	-	80	4	270	-	0.9	-	20,70	10/3	370	8.24
1155	V	6.89	-	.322	_	80	~	2.80	-	0.9	-	2063	i dr.	370	P.26
COMMENT	S:														

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ___ OF ___

	_																
SITE:			Forme	er Hess	- Port Re	ading		COI	SULTING	FIRM:		EARTH S	STEMS				
DATE:				3 21				FIE	LD PERSOI	INEL:		KI				- 1	
WEATHER:			Cloud	175				CI	RTIFICATI	ON #:		130	40				
MONITOR W				BG - 2		WELL DEF	9.0				SCRE	ENED/OPEN	INTERVAL:	-	4.0 - 9.0'		
WELL PERM	16 16 77:		26	00008130		WELL DIAMET	rer: 4"	Inches									
PID/FID REA	DIN	GS ((ppm):	BACKGROU	ND:	0.0	(1)	PUM	P INTAKE I	ерти: 5	ft below TO	oc .					
				BENEATH C	OUTER CAP:	0.0		DEPT	TH TO WAT	ER BEFORE PL	JMP INSTALI	LATION : 2.	59 ft belov	w TOC			
BENEATH INNER CAP:																	
	0	<u>ن</u>	pl	4 ±.1	SP	ECIFIC ± 3%	R	EDOX TIO	DIS	SOLVED + 10/c	TURB	IDITY O	TEMPER		PUMPING DEPTH TO WATER (ml/min) (ft below TOC		
TIME	Ž	(pH units) CONDUCTIVITY POT						FENTIAL	(O	YGEN	(N1	10)		es C) - 34			
	2	pH ± 1 SPECIFIC ± 3% CONDUCTIVITY P (pH units) (SM 4500H+B) (mS/cm) (EPA 120.1) READING CHANGE* READING CHANGE* READING						(mv)	(mg/l) READING	(SM 4500OG)	(EPA	180.1)	(SM 2	CHANGE	(ml/min)	(ft below TOC)	
1050	y	1	5.50	NA	0.773	NA	26	NA	0.68	NA	125	NA	24.59	NA Z	27<	3.02	
1055	y	1	5.46	04	0.271	733	20	~ 6	0.12	-82.35	133	6.4	25.39	3.25	1	3.65	
1100	7	1	5.49	,03	0.272	• 369	13	-7	0.23	91.67	113	15.04	25.27			3.74	
1105	γ	7	5.49	,- 5	0.273	.368	4	- 5	0.12	-47.83	_	23.63	25.28	.04		3.79	
1110	>	1	5.50	.01	0. 275	.733	2	-6	6.16	33.33	72.8	-15.64	25.27	04	and a production of the second	3.81	
1115	>	7	5.51	.01	0.278	1.09	- 2	-4	0.86	437.5	68.9	- 5.66	25.33	- 237		3.83	
1120	Х		5.50	01	0.281	1.08	_ B	- 3	0.90	4.65	66.9	- 2.90	25.35	.079		3.83	
161125	7		5.50	_	0.286	1.78	- 9	-4	0.74	-21.11	64.2	-4.04	25.37	.079		3.84	
1130	74		5,50	-	0.295	3.497	-14	- 5	0.57	-22.97	56.1	-12.61	25.34	-0.17		3.84	
1135	>	T	5.50		0.300	1.695	-17	- 3	0.52	-8.77	54.0	- 3.74	25.40	d. ZŠ7		3.84	
1140	5.50 - 0.304 1.33 -18							-1	0.47	-9.62	52.1	-3.52	25.40	_		3.85	
COMMENT 1445	F.	_	5.50	-	0.309	1.645	- 20	-2	0.44	- 6.38	52.0	19	25.42	-079		3.85	
1150		ju.	5 70	-	0304	-	-22	- 2	0.44	_	52.0	_	27.90	_	-	3.85	

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0,1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET	 OF	

SITE:		Form	er Hess	- Port Re	ading		C	DNSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			10/1	3/21			FI	ELD PERSOI	INEL:		RC				
WEATHER:	1			-				CERTIFICATI	ON #:		130	40			
MONITOR V		_	BG - 3 260001143	2	WELL DEF	12	Inches			SCRE	ENED/OPEN	INTERVAL:		7-12'	
PID/FID READINGS (ppm): BACKGROUND: OO PUMP INTAKE DEPTH: 1 ft below TOC BENEATH OUTER CAP: OO DEPTH TO WATER BEFORE PUMP INSTALLATION: 1/2 ft below TOC BENEATH INNER CAP: O. D															
TIME	(SM 4500H+B) (mS/cm) (EPA 120.1) (mv)							1	SOLVED YGEN (SM 45000G)				es C)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	P AS	OTATO OTATO					CHANGE*	READING	CHANGE*	READING	CHANGE'	READING	CHANGE'		
1330	1	6,73	NA	.294	NA	- 74	NA	11.15	NA	577	NA	2038	NA	360	5.34
1335	1	6.70	103	. 560	100	-70	6	0.91	2190	762	370%	20,21	10/3	300	5.83
1340	V	669	301	.245	6%	-52	8	0.65	2845	123	66%	2011	10%	300	5.93
1345	V	6.67	-02	-258	50/3	-57	5	1.21	86%	29	4030/5	2010	100	300	5.83
1350	1	6.65	٠٥٤	261	10/3	-59	2	1,39	1500	29.7	30%	2007	195	200	6.Z3
1355	J	6.65	-	.266	10/3	-6B	3	1.30	60%	26.1	120%	20,03	140	280	6.30
1400	V	6.65	-	,271	رين ا	-64	2	1.27	10/3	19.8	240%	20.34	100	280	6.33
1405	1	6.65	24	.276	10/5	-69	5	1.10	900	16.9	140%	\$20.24	100	200	6.43
1410	1	6.65	-	.279	1%	-72	3	1.11	40/	154	8%	2011	10%	260	650
1415	V	6.65	~	280	145	-74	2	H_{eff}	_	15.0	30%	20,10	1001	260	6.53
1920							7	1.10	-	14.9	10%	20.14	iva	7 60	650
COMMENT	S:	6.65	•	.283	10/2	-76	-	1.00	1005	12.3	170%	20.14	-	260	6.42

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET ___ OF ___

SITE:	Former Hess - Port Reading								ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:				14/15/	21			F	IELD PERSOI	INEL:		Ri				
WEATHER:				Clear					CERTIFICATI	ON #:		130	40			
1	VELL PERMIT #: LS - 1R VELL PERMIT #: 2600025324 WELL DIAMETER: 4 PID/FID READINGS (ppm): BACKGROUND:							Inches			SCRE	ENED/OPEN	INTERVAL:		6 - 16'	-
PID/FID REA	ADIN	GS	(ppm):		OUTER CAP:	0.0			MP INTAKE I	DEPTH: ER BEFORE P	ft below TO		13_ft belo	w TOC		
TIME	ME 0 1 (pH units) COI					PECIFIC DUCTIVITY (EPA 120.1)	РОТ	EDOX FENTIAL (mv)					TEMPERATURE (degrees C) (SM 2550)		PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
		READING CHANGE READING CHANGE READING CHANGE			CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	. ,	Ì Í			
100	1		6.51	NA	.466	NA	-106	NA	3.54	NA	6.3	NA	21.58	NA	300	392
1015	1		6-69	. 18	402	140/5	-117	8	1.60	550%	25.3	30000	21.9P	30/5	300	4.16
1020	1		689	. 20	386	40/5	-127	13	:35	780/3	40.2	5900	2230	10/0	200	4.45
1025	1		6.95	. 06	.376	30/3	-127		0,00	1000%	47.8	1900	22.40	16%	280	4.58
1010	1		6.98	,03	.373	10/3	-120	1	0.00	_	53.0	10%	2257	105	29-	4.76
1035	1		6.99	.01	,366	2013	-177	1	0.00	_	54,0	20/3	12,6)	105	290	4.91
1040	/		7,00	-0.1	.362	162	-124		0.42	_	54.6	10/3	22.78	100	287	5.08
1012		1	7,00		.360	10%	-126	1	0,60	-	54.9		22.P6	161,	240	5.19
			-				1									
COMMENT	S:															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET / OF /

SITE:			Forme	er Hess	- Port Re	eading		COI	NSULTING	FIRM:	EARTH SYSTEMS					
DATE:				0/13/2	1			FIE	LD PERSO	NNEL:	KY	/				
WEATHER:			50	my.	75			CI	ERTIFICATI	ION #:	7 01	130	40			
				10.7												
MONITOR V			-	LS - 2		WELL DE	12.				SCRE	ENED/OPEN	INTERVAL:		7.25-12.2	25'
MELL PER		+2		26000075	93	WELL DIAME	TER: 4'	Inches								
PID/FID RE	ADIN	IGS	(ppm):	BACKGROU	IND:	0	0	PUM	P INTAKE	DEPTH: X	ft below TO	oc				
				BENEATH C	OUTER CAP:	0.	0	DEP	FH TO WAT	ER BEFORE PI	UMP INSTAL	LATION : Z	54 ft belo	w TOC		
BENEATH INNER CAP:																
PH 1 SPECIFIC +3% REDOX 1 DISSOLVED 10 TURBIDITY TEMPERATURE (PH units) CONDUCTIVITY POTENTIAL OXYGEN (NTU) (degrees C) 3/4														PUMPING	DEPTH TO	
TIME	PURGING	SAMPLING	(pH u (SM 450		(mS/cm)	DUCTIVITY (EPA 120.1)	PC	(mv)	(mg/i)	(SM 4500OG)	(EPA			2550)	RATE (ml/min)	(ft below TOC)
						CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE.		CHANGE'	(**************************************	(It below TOC)
1011	Y		7.12	NA	1.11	NA	36	NA	0.54	NA	19.8	NA	21.2	NA	275	3.00
1016	×		7.02	-10	,976	-12.07	40	4	0.36	-37.33	17.0	-14.14	22.0k	*593		3.07
1021	>		7.10	.08	.802	-17.83	40		0.18	-50	16.7	-1.77	27.06			3.10
1026	Y		7.08	07	.780	-2.74	44	4	0.0		16.2	-2.99	21.90	- 073		3.16
1031	>	Ш	7.07	01	,774	77	46	2	0, 0	1,	16.0	-1.24	21,87	-,14		3.18
1036	>		7.09	50,	222.	- 26	46		0.0		15.7	-1.88	21.88	.05		3.21
1040		×	7.10	(0)	.773	7, ≥ €	46	-	60	_	16.0	-1.84	21.89	.0,-	C	3.20
	L															
COMMENT	S:			0		1.41			-							-
	Sungle @ 1040															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET OF

SITE:		Form	er Hess	- Port R	eading		СО	NSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			10/15/				FI	ELD PERSO	NNEL:	K					
WEATHER:		50	may	75			c	ERTIFICAT	10N #:		130	40			
MONITOR I			LS - 3 2600007	592	WELL DE		5' Inches			SCR	EENED/OPEN	INTERVAL:	_	6.5 - 12.5'	
PID/FID RE	ADINGS	(ppm):		UND: OUTER CAP: INNER CAP:	0,	0			DEPTH: 7,5			04 ft belo	w TOC		
TIME	PURGING	(pH (H ± units) :00H+B)		PECIFIC 13% DUCTIVITY (EPA 120.1)	PO	REDOX + /O	DIS O (mg/l)	XYGEN (SM 45000G)	(6)	BIDITY 10 /	TEMPER (degree (SM 2	RATURE Pes C)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
	PU SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE'		CHANGE'	(mi/min)	(It below Toc)
1100	À	6.57	NA	9.63	NA	-81	NA	0.44	NA	9.8	NA	21.58	NA	200	1.30
1105	y	6.58	.01	9.76	1.35	-85	4	.07	-84.09	6.3	-35.71	21.88	1.39	1	1.36
1110	γ	6.61	.03	9.87	1.13	-87	Z	0.0		8.0	26-98	21.99	.50		1.41
1115	}	6.64	.03	9.91	.41	-89	2	0.0	-	5.9	-26.25	22,17	.82		1.43
1/20	>	6.65	.01	9.90	10	-89		0.0		9.4	59.32	22.24	32		1.47
1025	>	6.66	.01	9.87	30	-89		0-0		8.5	- 9.57	22.57	1.48		1.48
1130	4	6.67	, 01	9.83	-:41	-90	/	0.0	_	7.9	-7.06	22.76	.84		1.48
1135	7	6.67	-	9.82	- ,10	-90	-	0.0	-	7.5	-5.06	22.80	.18		1.50
1140	Y	6.67	,	9.82	Dames.	-90	_	0.0	_	7.9	-5:06	22.40			1.50
COMMENT	'S :	Sung	li (2) 11	9										

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET	 OF	

SITE:	Former Hess - Port Reading							С	ONSULTING	FIRM:		EARTH S	YSTEMS			
DATE:			Jo	1/15/21				F	IELD PERSOI	NNEL:		RC				
WEATHER			C	lear					CERTIFICATI	ON #:		130	40			
MONITOR WELL PER			-	LS - 4 260000759	ne	WELL DE					SCRE	ENED/OPEN	INTERVAL:		7 - 14'	
WELL PER	MIT E	#Pi		20000075	95	WELL DIAME	TER: 4"	Inches								
PID/FID RE	ADII	NGS	(ppm):	BACKGROU	JND:	^	0	PU	MP INTAKE I	рерти: 9	ft below To	oc ,				
				BENEATH (OUTER CAP:		0	DE	PTH TO WAT	ER BEFORE PI	UMP INSTAL	LATION :	P3 ft belo	w TOC		
BENEATH INNER CAP:																
	T _o	و	р	Н	SF	ECIFIC	SOLVED	TURE	HDITY	TEMPE	RATURE	PUMPING	DEPTH TO			
TIME	TIME DESCRIPTION TIME DESCRIPTION (pH units) (SM 4500H+B) (mS/cm) (EPA 120.1) READING CHANGE* READING CHANGE*						1	TENTIAL (mm)		(YGEN		TU) 180.1)		es C) 2550)	RATE	WATER
	S (SM 4500H+B) (mS/c			<u> </u>	CHANGE*	READING	(mv)	(mg/l)	(SM 4500OG)	READING	CHANGE*		CHANGE'	(ml/min)	(ft below TOC)	
1110	1	П	I09	NA	2.66	NA	-58	NA	2.69	NA	212	NA	2117	NA	400	2.05
1115	ij	П	7.16	0.07	2.68	10%	-71	13	1.00	640%	190	10.30%	21.26	10%	\$.280	225
1126	1		720	0.04	271	10/	-52	N ₁	0.00	100%	173	9015	21.50	146	\$30285	250
1125	1		7.21	0.01	272	10/3	-92	10	000	_	156	10.30%	21.18	10%	280	2.66
1130	1		7.21	1000	2.73	10/3	-100	8	000	-	171	90%	4.67	145	280	2.76
1135	1		7.21	~	270	10/3	-100	-	000	-	141	-	21.60	100	580	2,81
1140	1	1	7.11	-	269	10%	-100	-	0,10	_	142	10/5	2159	1 uns	280	2,87
1145		V	721	-	268	10/3	-99	1	0.40	_	140	10%	2668	100	285	2,95
	\perp															
COMMEN.	MMENTS:															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

^{± 10} mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity